BEWERTETE KÖRPER Hausaufgabe 8

Aufgabe 1. (2 Punkte) Sei R ein Ring und $f(X) \in R[X]$. Zeige, dass es eine Polynom $H(X,Y) \in R[X,Y]$ existiert, sodass

$$f(X + Y) = f(X) + f'(X)Y + h(X, Y)Y^{2}.$$

Aufgabe 2. (2 Punkte) Zeige die Implikation $(7) \Rightarrow (6)$ von Satz 9.3.

Aufgabe 3. Sei p Primzahl mit p > 2. Wir schreiben \mathbb{Z}_p für den Bewertungsring von \mathbb{Q}_p . Setze

$$(\mathbb{Z}_p^{\times})^2 \coloneqq \{x \in \mathbb{Z}_p^{\times} : (\exists y)(x = y^2 \text{ und } y \in \mathbb{Z}_p^{\times}\}.$$

- (1) (2 Punkte) Zeige, dass $(\mathbb{Z}_p^{\times})^2$ eine offene Menge ist (Hinweis: falls $a \in (\mathbb{Z}_p^{\times})^2$, gilt $B_0(a) \subseteq (\mathbb{Z}_p^{\times})^2$, wobei $B_0(a) = \{x \in \mathbb{Z}_p : v(x-a) > 0\}$).
- (2) (2 Punkte) Schließe daraus, dass $[\mathbb{Z}_p^{\times}:(\mathbb{Z}_p^{\times})^2]$ endlich ist.
- (3) (2 Punkte) Zeige, dass sich jedes Element in \mathbb{Q}_p^* schreiben lässt als $p^n u$ mit für $n \in \mathbb{Z}$ und $u \in \mathbb{Z}_p^{\times}$. (Hinweis: Nutze Aufgabe 4 von Hausaufgabe 2).
- (4) (2 Punkte) Schließe daraus, dass $[\mathbb{Q}_p^*:(\mathbb{Q}_p^*)^2]$ endlich ist, wobei

$$(\mathbb{Q}_p^*)^2 := \{ x \in \mathbb{Q}_p^2 : (\exists y \in \mathbb{Q}_p)(x = y^2) \}.$$

Aufgabe 4 (Krasnersatz). (4 Punkte) Sei (K, v) ein henselscher bewerteter Körper. Seien $a, b \in K^{\text{alg}}$ (algebraischer Abschluß von K) und $a_2, \ldots, a_n \in K^{\text{alg}}$ die zu a konjugierten Elementen (wobei alle a_i jeweils von a verschieden sind). Zeige, dass $K(\alpha) \subseteq K(\beta)$ gilt, falls

$$v(a-b) > v(a-a_i)$$
 für $i = 2, \ldots, n$.

(Hinweis: falls $c, c' \in K^{\text{alg}}$ Konjugiert über K sind, gilt $v_p(c) = v_p(c')$).

Aufgabe 5. Sei p > 2 Primzahl.

- (1) (2 Punkte) Zeige, dass jede quadratische Erweiterung eines Körpers der Charakteristik ungleich 2 isomorph zum Zerfällungsköprper eines Polynomes der Form x^2-a ist.
- (2) (2 Punkte) Schließe daraus, dass \mathbb{Q}_p nur endlich viele (bis auf Isomorphie, oder in $\mathbb{Q}_p^{\text{alg}}$) quadratische Erweiterungen besitzt.

(Abgabe 08.06.22)