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Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set S. From
the main result in the paper, Theorem 1.2, we deduce the following two corollaries.

First, we show that there exists a computable constant C = C(δ, �S) such that, for
any endomorphism ϕ of H, if ϕ(h) is conjugate to h for every element h ∈ H of length
up to C, then ϕ is an inner automorphism. Second, we show a mixed (conjugate/non-
conjugate) version of the classical Whitehead problem for tuples is solvable in torsion-free
hyperbolic groups.

Keywords: Hyperbolic group; automorphism; Whitehead algorithm.

1. Introduction

Let G be a group and A be a subset of G. An endomorphism ϕ of G is called
pointwise inner on A if the element ϕ(g) is conjugate to g, for every g ∈ A. We
call ϕ pointwise inner if it is pointwise inner on G. The group of all pointwise inner
automorphisms of G is denoted by Autpi(G). Clearly, Inn(G)�Autpi(G)�Aut(G).

There are groups admitting pointwise inner automorphisms which are not
inner. For example, some finite groups (see [19]), some torsion-free nilpotent
groups (see [20]), some nilpotent Lie groups (see [7]), and direct products of such
groups with arbitrary groups. The fact that some nilpotent Lie groups admit such
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automorphisms was used in [7] to construct isospectral but not isometric Rieman-
nian manifolds.

On the other hand, for free nilpotent groups (see [6]), for free groups (see [8, 11]),
for nontrivial free products (see [18]), and for fundamental groups of closed surfaces
of negative Euler characteristic (see [1]), all pointwise inner automorphisms are
indeed inner. In the last paper, this property was used to show that surface groups
satisfy a weak Magnus property.

One of the results in the present paper implies that torsion-free hyperbolic
groups also fall into this last class of groups. In fact, we prove a stronger computa-
tional version of this fact: endomorphisms of torsion-free hyperbolic groups which
are pointwise inner on a ball of a uniformly bounded (and computable) radius, are
indeed inner automorphisms.

Theorem 1.1. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S. Then, there exists a computable constant C (depending only on δ

and the cardinal �S) such that, for every endomorphism ϕ of H, if ϕ(g) is conjugate
to g for every element g in the ball of radius C, then ϕ is an inner automorphism.

An immediate consequence of Theorem 1.1 is that one can algorithmically decide
whether a given endomorphism of a torsion-free hyperbolic group (given by a finite
presentation, and images of generators) is or is not an inner automorphism. This
can also be easily deduced from the well-known fact that hyperbolic groups and
their direct products are bi-automatic; an alternative proof can also be found in
[4, Theorem A]. However we stress, that the purpose of the present paper is not
the conjugacy problem for subsets of elements in hyperbolic groups.

Theorem 1.1 follows immediately from the main result of this paper (of a more
technical nature):

Theorem 1.2. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S. Let a1, . . . , an and a1∗, . . . , an∗ be elements of H such that ai∗
is conjugate to ai for every i = 1, . . . , n. Then, there is a uniform conjugator for
them if and only if W (a1∗, . . . , an∗) is conjugate to W (a1, . . . , an) for every word
W in n variables and length up to a computable constant depending only on δ, �S

and
∑n

i=1 |ai|.
Note that Theorem 1.1 was formulated in [2, Theorem 2]. Independently,

Minasyan and Osin [17] proved a variant of Theorem 1.2, for relatively hyper-
bolic groups but without the statement on computability for the involved constant.
Note also that our Theorem 1.1 and [17, Theorem 1.1] both imply that if H is a
torsion-free hyperbolic group, then the groups Inn(H) and Autpi(H) coincide.

Metaftsis and Sykiotis [14, 15] proved that, for any (relatively) hyperbolic group
H , the group Inn(H) has finite index in Autpi(H). Their proof is not constructive,
it uses ultrafilters and ideas of Paulin on limits of group actions.

The constructive character of Theorem 1.2 suggests to replace there and in
Theorem 1.1, the “ball” of words by a unique word. We raise the following problems.
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Problem 1. Let n, s be natural numbers and let δ be a real nonnegative number.
Does there exist a word Wn,δ,s in n variables, such that the following statement
holds?

Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S. Let a1, . . . , an and a1∗, . . . , an∗ be elements of H such that ai∗ is conjugate
to ai for every i = 1, . . . , n. Then, there is a uniform conjugator for them if and
only if W (a1∗, . . . , an∗) is conjugate to W (a1, . . . , an) for W = Wn,δ,�S .

In the special case, where H is a free group and the elements a1, . . . , an, generate
a noncyclic subgroup this problem has a positive solution due to Lee (see [10,
Theorem, p. 2]). Note that the paper of Lee is a development of the paper of
Ivanov [9] on test words in free groups.

Problem 2. Let s be a natural number and δ be a real nonnegative number. Does
there exist a test word Wδ,s in s variables, such that the following statement holds?

Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S and let ϕ be an endomorphism of H . Then ϕ is an inner automorphism if and
only if ϕ(Wδ,�S) is conjugate to Wδ,�S .

Clearly, a positive solution to Problem 1 would imply a positive solution to
Problem 2.

Now we describe another application of Theorem 1.2. Consider a list of elements
in a finitely presented group G, organized in n blocks:

u1,1, . . . , u1,m1,

u2,1, . . . , u2,m2,

. . . (1)

un,1, . . . , un,mn .

The mixed Whitehead problem consists in finding an algorithm to decide
whether, given two such lists, there exists an automorphism of G sending the first
list to the second up to conjugation, but asking for a uniform conjugator in every
block (and possibly different from those in other blocks).

Note that in the case where each block consists of a single element (i.e. mi = 1
for all i = 1, . . . , n), this is exactly asking whether there exists an automorphism
of G sending the first list of elements to the second one up to conjugacy, with no
restriction for the conjugators.

On the other hand, if there is only one block (i.e. n = 1), the mixed Whitehead
problem is equivalent to asking whether there exists an automorphism of G sending
the first list of elements exactly to the second.

We call these cases of the general problem the first and the second Whitehead
problem for G, respectively.

For finitely generated free groups, the first Whitehead problem was solved by
Whitehead in 1936 (see [21] or [12]), and the second Whitehead problem was solved
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by McCool in 1974 (see [13] or [12]). These two results have been recently generalized
to arbitrary hyperbolic groups by Dahmani and Guirardel (see [5, Corollary 5]).

Using Theorem 1.2, we can extend Dahmani–Guirardel’s result to solving the
mixed Whitehead problem for hyperbolic groups, in the torsion-free case.

Theorem 1.3. Let H be a torsion-free δ-hyperbolic group, with respect to a finite
generating set S. The mixed Whitehead problem for H is solvable.

The structure of the paper is as follows. In Sec. 2, we recall some defini-
tions and basic facts on hyperbolic metric spaces and hyperbolic groups. Also,
we prove there several statements (specially about norms and axes of elements,
and about controlling cancelations in some products of elements) which will
be used later. The main theorem will be proved in Secs. 3 to 5. In Sec. 3,
we prove auxiliary statements, in Sec. 4, we consider the case n = 2 and in
Sec. 5, we consider the general case. These three sections are sequential and
the arguments in each one are helpful for the next one. In Sec. 6, we prove
Theorem 1.3.

2. Hyperbolic Preliminaries

2.1. Hyperbolic spaces

Let (X , d) be a metric space.
If A, B are points or subsets of X , the distance between them will be denoted

by d(A, B), or simply by |AB| if there is no risk of confusion.
A path in X is a map p : I → X , where I is an interval of the real line (bounded

or unbounded) or else the intersection of Z with such an interval. In the last
case the path is called discrete. If I = [a, b] then p− = p(a) and p+ = p(b) are
called the endpoints of p. In that case we say that the path p is bounded and
passes from p− to p+; otherwise, we use the terms infinite path and bi-infinite
path with the obvious meaning. Sometimes we will identify a path with its image
in X .

We say that a path p is geodesic if d(p(r), p(s)) = |r − s| for every r, s ∈ I. The
space (X , d) is said to be a geodesic metric space if for every two points A, B ∈ X
there is a geodesic from A to B (not necessarily unique). Such a geodesic is usually
denoted [AB].

By a geodesic n-gon A1A2 · · ·An, where n ≥ 3, we mean a cycli-
cally ordered list of points A1, . . . , An ∈ X together with chosen geodesics
[A1A2], [A2A3], . . . , [An−1An], [AnA1]; each of these geodesics is called a side of the
n-gon, and each Ai a vertex. A geodesic 3-gon is usually called a geodesic triangle,
and a geodesic 4-gon a geodesic rectangle.

Definition 2.1. Let (X , d) be a geodesic metric space and δ be a nonnegative real
number.
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A geodesic triangle A1A2A3 in X is called δ-thin if for any vertex Ai and any
two points X ∈ [Ai, Aj ], Y ∈ [Ai, Ak] with

|AiX | = |AiY | ≤ 1
2
(|AiAj | + |AiAk| − |AjAk|),

we have |XY | ≤ δ. The space X is called δ-hyperbolic if every geodesic triangle in
X is δ-thin.

Directly from this definition it follows that each side of a δ-thin triangle is
contained in the δ-neighborhood of the union of the other two. By induction, one
can easily extend this observation to n-gons.

Proposition 2.2. If A1A2 · · ·An is a geodesic n-gon in a δ-hyperbolic geodesic
space, then each side is contained in the (n − 2) δ-neighborhood of the union of all
the others.

The following result is straightforward and will be used later (it is known as the
rectangle inequality).

Proposition 2.3 (see [3, Remark 1.21, Chap. III.H]). Any 4-gon ABCD in
a δ-hyperbolic geodesic space (X , d) satisfies the following inequality :

|AC| + |BD| ≤ max{|BC| + |AD|, |AB| + |CD|} + 2δ.

Along the paper, we will need to use some approximations to the concept of
geodesic. Here is a technical result and two standard notions.

Lemma 2.4. Let A1, A2, . . . , An be n ≥ 3 points in a δ-hyperbolic geodesic space
satisfying the following conditions:

(i) |Ai−1Ai+1| ≥ |Ai−1Ai| + |AiAi+1| − 2δ, for every 2 ≤ i ≤ n − 1,

(ii) |Ai−1Ai| > (2n − 3)δ, for every 3 ≤ i ≤ n − 1.

Then,

|A1An| ≥
n−1∑
i=1

|AiAi+1| − (4n − 10)δ. (2)

Proof. The proof goes by induction on n. Note that for n = 3, the result is obvious.
Assume the result valid for n points and let us prove it for n + 1. Let

A1, A2, . . . , An, An+1 be n + 1 points satisfying condition (i) for 2 ≤ i ≤ n, and
condition (ii) for 3 ≤ i ≤ n. Clearly then A1, A2, . . . , An satisfy the corresponding
conditions and, by the inductive hypothesis, we have Eq. (2), so

|A1An| ≥
n−1∑
i=1

|AiAi+1| − (4n − 10)δ ≥ |A1An−1| + |An−1An| − (4n − 10)δ.

From condition (i) with i = n, we have

|An−1An+1| ≥ |An−1An| + |AnAn+1| − 2δ. (3)
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Adding these two last inequalities and applying condition (ii) for i = n, we get

|A1An| + |An−1An+1| ≥ |A1An−1| + |AnAn+1| + 2|An−1An| − (4n − 8)δ

> |A1An−1| + |AnAn+1| + 2δ.

Therefore, the maximum in the rectangle inequality applied to A1An−1AnAn+1 (see
Proposition 2.3),

|A1An| + |An−1An+1| ≤ max{|A1An−1| + |AnAn+1|, |A1An+1| + |An−1An|} + 2δ,

is achieved in the second entry. Hence,

|A1An| + |An−1An+1| ≤ |A1An+1| + |An−1An| + 2δ. (4)

On the other hand, from the induction hypothesis (2) and inequality (3), we have

|A1An| + |An−1An+1| ≥
(

n−1∑
i=1

|AiAi+1| − (4n − 10)δ

)
+ |An−1An|

+ |AnAn+1| − 2δ

=
n∑

i=1

|AiAi+1| + |An−1An| − (4n − 8)δ.

From this and inequality (4), we complete the proof:

|A1An+1| ≥
n∑

i=1

|AiAi+1| − (4n − 6)δ =
n∑

i=1

|AiAi+1| − (4(n + 1) − 10)δ.

Definition 2.5. Let (X , d) be a metric space and p : I → X be a path. Let k > 0,
λ ≥ 1 and ε ≥ 0 be real numbers. The path p is said to be k-local geodesic if
d(p(r), p(s)) = |r − s| for all r, s ∈ I with |r − s| ≤ k. And it is said to be (λ, ε)-
quasi-geodesic if, for all r, s ∈ I, we have

1
λ
|r − s| − ε ≤ d(p(r), p(s)) ≤ λ|r − s| + ε.

Proposition 2.6 (see [3, Theorem 1.13(3), Chap. III.H]). Let X be a δ-
hyperbolic geodesic space and let p : [a, b] → X be a k-local geodesic with k > 8δ.
Then, p is a (λ, ε)-quasi-geodesic, where λ = k+4δ

k−4δ and ε = 2δ.

The following proposition (without the statement on computability for R) is
[3, Theorem 1.7, Chap. III.H]. The computability of R can be easily extracted from
the proof there.

Proposition 2.7 (see [3, Theorem 1.7, Chap. III.H]). If X is a δ-hyperbolic
geodesic space, p is a bounded (λ, ε)-quasi-geodesic in X and c is a geodesic segment
joining the endpoints of p, then im c and im p are contained in the R-neighborhood
of each other, where R = R(δ, λ, ε) is a computable function.
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The following lemma is a slight modification of [16, Lemma 4.2]; see Remark 2.9.
It states that, under some conditions, a concatenation of several (λ̄, ε̄)-quasi-
geodesics in a δ-hyperbolic geodesic space is (λ, ε)-quasi-geodesic, where the num-
bers λ, ε are computable and do not depend on the number of concatenated paths.

Lemma 2.8 (see [15, Lemma 4.2] and Remark 2.9 below). Let X be a δ-
hyperbolic geodesic space. For every λ̄ ≥ 1, ε̄ ≥ 0, K ≥ 14δ, there exist computable
constants λ = λ(δ, λ̄, ε̄, K) ≥ 1 and ε = ε(δ, λ̄, ε̄, K) ≥ 0 satisfying the statement
below.

Assume N ∈ N, Xi ∈ X , i = 0, . . . , N, and qi : [0, ni] → X , where ni ≥ 1 are
(λ̄, ε̄)-quasi-geodesic paths in X from Xi−1 to Xi, i = 1, . . . , N, and suppose that the
following holds for all possible i:

(1) |Xi−1Xi| ≥ 12(K + δ) + ε̄ + 1,

(2) |Xi−1Xi+1| ≥ |Xi−1Xi| + |XiXi+1| − 2K.

Then the path q obtained by a consequent concatenation of q1, q2, . . . , qN is (λ, ε)-
quasi-geodesic.

Remark 2.9. (a) Our (λ, ε)-quasi-geodesics are ( 1
λ , ε)-quasi-geodesics in the sense

of [16].
(b) Using the condition ni ≥ 1, it is easy to check that for the path

q : [0,
∑N

i=1 ni] → X from Lemma 2.8 and for all r, s from the domain of q the
following holds:

d(q(r), q(s)) ≤ (λ̄ + ε̄)|r − s| + 2ε̄.

(c) In [16, Lemma 4.2], there is the condition ‖qi‖ ≥ (C1 + c̄)/λ̄, however,
the proof uses only its consequence ‖[Xi−1, Xi]‖ ≥ C1, which we adapted as
condition (1) above.

2.2. Hyperbolic groups

Let H be a group given, together with a finite generating set S.
The length of an element g ∈ H (with respect to S), denoted |g|, is defined as

the length of the shortest word in S±1 which equals g in H . This naturally turns
H into a metric space; | · | is usually called the word metric.

Let Γ(H, S) be the geometric realization of the right Cayley graph of H with
respect to S. We will consider Γ(H, S) as a metric space with the metric, induced
by the word metric on H : d(g1, g2) = |g−1

1 g2|. In particular, edges are isometric to
the real interval [0, 1]. We highlight the fact that there is a notational incoherence
in using |AB| to denote the distance between points A and B in the Cayley graph
Γ(H, S), while |a−1b| is the distance between the elements a and b of H ; however,
there will be no confusion because we adopt the convention of using capital letters
when thinking elements of H as vertices of the Cayley graph.
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The ball of radius r around 1 in Γ(H, S) is denoted B(r). The cardinality of any
subset M ⊆ H is denoted �M . For brevity, the cardinality of the set B(r) ∩ H is
denoted by �B(r). Clearly, an upper bound for �B(r) is the number of elements in
the similar ball for the free group with basis S, so �B(r) ≤ 2(2�S − 1)r.

The group H is called δ-hyperbolic with respect to S if the corresponding metric
space Γ(H, S) is δ-hyperbolic. It is well-known that if a group is hyperbolic with
respect to some finite generating set, then it is also hyperbolic with respect to
any other finite generating set (with a possibly different δ). This allows to define
hyperbolic groups: H is said to be hyperbolic if for some finite generating set S, and
some real number δ ≥ 0, H is δ-hyperbolic with respect to S. It is also well-known
that a finitely generated group is free if and only if it is 0-hyperbolic with respect
to some finite generating set S.

Let us begin with some well-known results about hyperbolic groups that will
be needed later. The first one reproduces [3, Proposition 3.20, Chap. III.Γ] plus
the computability of the involved constant, which can be easily extracted from the
proof there.

Proposition 2.10 (see [3, Proposition 3.20, Chap. III.Γ]). Let H be a δ-
hyperbolic group with respect to a finite generating set S. For every finite set of
elements h1, . . . , hr ∈ H there exists an integer n > 0 such that 〈hn

1 , . . . , hn
r 〉 is free

(of rank r or less). Furthermore, the integer n is a computable function of δ, �S and∑r
i |hi|.

Theorem 2.11 (see [4, Proposition 2.3]). Let H be a δ-hyperbolic group with
respect to a finite generating set S. If u, v ∈ H are conjugate, then the length
of the shortest conjugator is bounded from above by a computable function of
max{|u|, |v|}, δ and �S.

Proposition 2.12 (see [3, Corollary 3.10(1), Chap. III.Γ]). Let H be a δ-
hyperbolic group with respect to a finite generating set S, and let g ∈ H be an element
of infinite order. Then the map Z → H given by n 
→ gn is a quasi-geodesic.

The following lemma is well-known and can be easily deduced from Proposi-
tion 2.12.

Lemma 2.13. Let H be a δ-hyperbolic group with respect to a finite generating set
S, and let g ∈ H be an element of infinite order. If gp and gq are conjugate then
p = ±q.

Now, we provide an alternative proof for Proposition 2.12, in order to gain
computability of the involved constants.

Lemma 2.14. The constants λ and ε in Proposition 2.12 are computable functions
depending only on δ, �S and |g|.
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Proof. First, we make the following two easy observations:

(1) Let k ≥ 1 be a natural number and suppose that the map Z → H given by n 
→
gkn is (λ′, ε′)-quasi-geodesic. Then the map Z → H given by n 
→ gn is (λ, ε)-
quasi-geodesic, where λ, ε are computable constants depending on λ′, ε′, k, |g|
(one can take λ = kλ′ and ε = k2λ′|g|+ kε′ + k). Thus, at any moment we can
replace g by an appropriate power gk.

(2) Let g0 be a conjugate of g in H , say g = h−1g0h for some h ∈ H , and suppose
that the map Z → H , n 
→ gn

0 , is (λ′, ε′)-quasi-geodesic. Then, the map Z → H ,
n 
→ gn, is (λ, ε)-quasi-geodesic, where λ = λ′ and ε = ε′ + 2|h|. Thus, at any
moment we can replace g by any conjugate h−1gh.

Now, let us prove the result. Take an element g ∈ H of infinite order. By
Lemma 2.13, there must exists an exponent 1 ≤ r ≤ 1 + �B(8δ) such that the
shortest conjugate of gr, say g0, has length |g0| = k > 8δ (note that both r and the
corresponding conjugate are effectively computable by Theorem 2.11). Replacing g

by g0 and applying the previous two paragraphs, we may assume that |g| = k > 8δ

and no conjugate of g is shorter than g itself.
Take a geodesic expression for g, say g = s1 · · · sk with si ∈ S±1, and consider

the bi-infinite path pg : Z → H defined by the following rule: if n ≥ 0 and n =
tk + r, where 0 ≤ r < k, then pg(n) = gts1 · · · sr and pg(−n) = g−ts−1

k · · · s−1
k−r+1;

this corresponds to the bi-infinite word g∞ = · · · s1 · · · sks1 · · · sk · · · . Clearly, any
segment of length k is of the form si · · · sks1 · · · si−1, i.e. a conjugate of g and hence
geodesic. So, pg is a k-locall geodesic and thus a (8δ + 1)-local geodesic. Finally, by
Proposition 2.6, pg is a (3, 2δ)-quasi-geodesic. Hence the map n 
→ gn is a (3k, 2δ)-
quasi-geodesic.

Combining Proposition 2.7 with Proposition 2.12 and Lemma 2.14, we obtain
the following three corollaries.

Corollary 2.15. Let H be a δ-hyperbolic group with respect to a finite generating
set S, and let g ∈ H be of infinite order. Then for any integers i < j, the set
{gi, gi+1, . . . , gj} and any geodesic segment [gi, gj] lie in the µ-neighborhood of each
other, where µ = µ(δ, �S, |g|) is a computable function.

Corollary 2.16. Let H be a δ-hyperbolic group with respect to a finite generating
set S, and let g ∈ H be of infinite order. For any natural numbers s, t we have

|gs+t| ≥ |gs| + |gt| − 2µ,

where µ = µ(δ, �S, |g|) is the constant from Corollary 2.15.

Proof. Consider the points A = 1, B = gs and C = gs+t and choose geodesics
[AB], [BC] and [AC]. By Corollary 2.15, there exists D ∈ [AC] such that |BD| ≤ µ.
Then,

|AC| = |AD| + |DC| ≥ (|AB| − |BD|) + (|CB| − |BD|) ≥ |AB| + |BC| − 2µ.
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The next result in this subsection is about torsion-free hyperbolic groups. It
uses the following well-known result.

Proposition 2.17. Let H be a torsion-free δ-hyperbolic group. Then, centralizers
of nontrivial elements are infinite cyclic. In particular, extraction of roots is unique
in H (i.e. gr

1 = gr
2 implies g1 = g2). Furthermore, if for 1 �= g ∈ H, gp and gq are

conjugate then p = q.

Proof. Cyclicity of centralizers is proven in [3, pp. 462–463].
Suppose gr

1 = gr
2. Then both g1 and g2 belong to the infinite cyclic group CH(gr

1)
and so, g1 = g2.

Finally, suppose that gp = h−1gqh; by Lemma 2.13, p = εq where ε = ±1.
Extracting roots, h−1gh = gε. Thus, h2 commutes with g so both are powers of a
common element, say z ∈ H . But h also commutes with z so they are both powers
of a common y, and so is g too. Hence, h−1gh = g and ε = 1. Thus, p = q.

This proposition allows to use rational exponents in the notation, when working
in torsion-free δ-hyperbolic groups (with g1/s meaning the unique element x such
that xs = g, assuming it exists). For example, it is easy to see that in such a group,
every element commuting with gr �= 1 must be a rational power of g.

Corollary 2.18. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S. There exists a computable function f : N

2 → N such that, for
any two elements g, v ∈ H and for any nonnegative integers p, q, the following
holds

|gpvgq| > |gp+q| − f(|g|, |v|).

Proof. Let µ = µ(|g|) be the computable constant given in Corollary 2.15: for any
two integers i < j, the set {gi, gi+1, . . . , gj} is contained in the µ-neighborhood
of any geodesic with endpoints gi and gj . Let N = �B(2δ + 2µ + |v|) and M =
2(N + 1)(µ + 1).

Given p, q ≥ 0, consider the points A = 1, B = gp, C = gpv, and D = gpvgq,
and choose geodesics [AB], [AC], [CD ] and [DA] (see Fig. 1). Let P be the point
in [CD ] at distance � = 1

2 (|AC| + |CD | − |AD|) from C.

Fig. 1.

10
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If � < M then

|gpvgq| = |AD| = |AC| + |CD| − 2� ≥ (|gp| − |v|)+ |gq| − 2�

> |gp+q| − |v| − 2M.

Otherwise, if � ≥ M , we will prove that g and v commute and so, |gpvgq| =
|gp+qv| ≥ |gp+q| − |v|, concluding the proof.

So, assume � ≥ M and let us prove that g and v commute.
Let X be an arbitrary point on [CD] with |CX | ≤ �. Then X is at distance

at most δ from the side [AC] of the geodesic triangle ACD. But this side is in
the (δ + |v|)-neighborhood of the side [AB] of the geodesic triangle ABC. And,
by Corollary 2.15, this last one is in the µ-neighborhood of the set {1, g, . . . , gp}.
Hence, there is a point of the form Y = gp0 , 0 ≤ p0 ≤ p, such that |XY | ≤
2δ + µ + |v|. Similarly, X is in the µ-neighborhood of {C, Cg, . . . , Cgq}, i.e. there
exists a point of the form Z = Cgq0 = gpvgq0 , 0 ≤ q0 ≤ q, such that |XZ| ≤ µ.
Thus, |gp−p0vgq0 | = |Y Z| ≤ |Y X | + |XZ| ≤ 2δ + 2µ + |v|.

Now, let X1, . . . , XN+1 be points on [CD], such that |CXi| = 2i(µ + 1) (the
existence of all these points is ensured by our assumption � ≥ M). The previous
paragraph gives us points Yi = gpi and Zi = gpvgqi , with 0 ≤ pi ≤ p and 0 ≤ qi ≤ q,
such that |XiYi| ≤ 2δ + µ + |v| and |XiZi| ≤ µ; thus, |gp−pivgqi | ≤ 2δ + 2µ + |v|,
for all i = 1, . . . , N + 1. Furthermore, note that qi �= qj whenever i �= j (otherwise,
Zi = Zj and |XiXj | ≤ |XiZi| + |ZjXj| ≤ 2µ, a contradiction).

This way we have obtained N + 1 elements gp−pivgqi all of them in the ball
B(2δ+2µ+|v|), which has cardinal N . Thus, there must be at least one coincidence,
gp−pivgqi = gp−pj vgqj , for i �= j. Hence, vgqj−qiv−1 = gpj−pi . Since qi �= qj ,
Proposition 2.17 implies that qj − qi = pj − pi and, extracting roots, vgv−1 = g.
This means that g commutes with v, completing the proof.

The following lemma is a slight modification of [16, Lemma 4.3]. Since the
computability of the constant k0 is not mentioned there, we reproduce the proof
here with emphasis on the computational aspect.

Lemma 2.19 (see [16, Lemma 4.3]). Let H be a torsion-free δ-hyperbolic group
with respect to a finite generating set S, and let a, b be two elements, such that
b /∈ CH(a). Then there is a computable integer k0 = k0(|a|, |b|, δ, �S) > 0, such that
for every k > k0, the element abk is root-free.

Proof. Let w1, w2 be shortest words in the alphabet S±1 representing a and b

respectively. By Proposition 2.12 and Lemma 2.14, there exist computable con-
stants λ̄, ε̄′ depending on δ, �S, and |b|, such that for any natural n any path in
Γ(H, S) labeled by wn

2 is (λ̄, ε̄′)-quasi-geodesic. Then for any natural n any path in
Γ(H, S) labeled by w1w

n
2 is (λ̄, ε̄)-quasi-geodesic, where ε̄ = ε̄′ + 2|a|. Define two

11
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real constants:

K = µ(|b|) +
1
2
f(|b|, |a|) +

3
2
|a| + 14δ,

n0 =
λ̄ (12(K + δ) + 2ε̄ + 1) − |a|

|b| ,

where µ and f are the functions from Corollaries 2.15 and 2.18.
We claim that there exist computable constants λ, ε ∈ R depending on δ, �S,

|a|, and |b|, such that for every natural n > n0, the infinite path in Γ(H, S) starting
at 1 and labeled by (w1w

n
2 )(w1w

n
2 ) . . . is (λ, ε)-quasi-geodesic.

We prove this with the help of Lemma 2.8, where we set Xi = (abn)i and define
qi to be the path in Γ(H, S) from Xi−1 to Xi with label w1w

n
2 . Since the paths qi

are (λ̄, ε̄)-quasi-geodesic, it suffices to verify Conditions (1) and (2) of that lemma.
Condition (1) is trivially satisfied (we use n > n0, |a| = |w1|, and |b| = |w2|):

|Xi−1Xi| = |abn| ≥ (λ̄)−1(n|w2| + |w1|) − ε̄ ≥ 12(K + δ) + ε̄ + 1.

We check condition (2) with the help of Corollaries 2.18 and 2.16:

|Xi−1Xi+1| = |(abn)2| ≥ |bnabn| − |a|
> |b2n| − f(|b|, |a|) − |a|
≥ 2|bn| − 2µ(|b|) − f(|b|, |a|) − |a|
≥ 2|abn| − 2µ(|b|) − f(|b|, |a|) − 3|a|
≥ 2|abn| − 2K

= |Xi−1Xi| + |XiXi+1| − 2K.

Now we fix a natural n > n0. Let x ∈ CH(abn). We take an arbitrary natural
number l and consider the geodesic quadrangle Y1Y2Y3Y4 in Γ(H, S) with Y1 = 1,
Y2 = x, Y3 = x(abn)l, Y4 = x(abn)lx−1 = (abn)l, and (λ, ε)-quasi-geodesic paths p

from Y2 to Y3 and q from Y1 to Y4, both labeled by (w1w
n
2 )l.

By Proposition 2.7, there is a constant ν = ν(δ, λ, ε), such that p and the
geodesic segment [Y2, Y3] are contained in the ν-neighborhood of each other, and
also q and [Y1, Y4] are contained in the ν-neighborhood of each other.

Observe that for sufficiently large l, the sides [Y2, Y3] and [Y1, Y4] are much
longer than the sides [Y1, Y2] and [Y3, Y4]. Then the δ-hyperbolicity of H implies
that some sufficiently long subsegments of [Y2, Y3] and [Y1, Y4] are contained in the
2δ-neighborhood of each other.

Thus, for sufficiently large l, there is a subpath r of p labeled by wn
2 and there

are points u, v on q such that d(r−, u) ≤ 2ν + 2δ, and d(r+, v) ≤ 2ν + 2δ. Then

d(u, v) ≥ d(r−, r+) − d(r−, u) − d(r+, v)

≥ |bn| − (4ν + 4δ)

≥ (λ̄)−1n|b| − ε̄′ − (4ν + 4δ).

12
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Fig. 2. Case n = l = 3.

We can compute n1 > n0 such that for all n ≥ n1

d(u, v) ≥ (2λ̄)−1n|b| + 2 max{|a|, |b|}.
Then the subpath of q with endpoints u, v contains a subpath q′ labeled by wt

2,
where

t = �(2λ̄)−1n
. (†)
Since every side of a geodesic quadrangle in Γ(H, S) lies in the 2δ-neighborhood of
the union of its other sides, we have

[u, v] ⊆ O2δ([r−, r+] ∪ [r−, u] ∪ [r+, v]) ⊆ O2ν+4δ([r−, r+]),

hence (by Proposition 2.7)

q′ ⊆ Oν([u, v]) ⊆ O3ν+4δ([r−, r+]) ⊆ O4ν+4δ(r).

Consider the vertices a0 = q′−, a1, . . . , at = q′+ of the path q′ such that the
subpaths between ai−1 and ai are labeled by w2 for every 1 ≤ i ≤ t (they are called
phase vertices). Then each of them is at distance at most 4ν + 4δ + |w2| from a
phase vertex of r. Therefore, if

t > �B(4ν + 4δ + |b|), (‡)
there will be two paths α and β connecting two different phase vertices of q′ with
some phase vertices of r having the same word written on them. Let z be the element
of H represented by this word. Then bm = zbm′

z−1 for some nonzero m, m′. Since
H is a torsion free hyperbolic group, we have z ∈ CH(b).

By construction, x = (abn)sbkzbk′
(abn)s′

for some s, s′, k, k′. We have

bkzbk′
= (abn)−sx(abn)−s′ ∈ CH(b) ∩ CH(abn) = 1

and so x = (abn)s+s′
. This shows that (abn) is root-free for all n ≥ n1 as soon as we

can provide condition (‡). By (†), this condition will be fulfilled for every natural

13
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n ≥ n2, where

n2 = 2λ̄
(
�B(4ν + 4δ + |b|) + 1

)
.

So, we can set k0 = �max{n1, n2}�.

2.3. Controlling cancelation

Definition 2.20. Let H be a δ-hyperbolic group with respect to a finite generating
set S. For elements g, u, v ∈ H and a real number c > 0, we write g = u ·

c
v if g = uv

and 1
2 (|u| + |v| − |uv|) < c. Also, we write g = u ·

c
v ·

c
w if g = uvw and uv = u ·

c
v,

and vw = v ·
c
w.

The definition of u ·
c

v is equivalent to |uv| > |u| + |v| − 2c. So, if H is a
free group, u ·

c
v means precisely that the maximal terminal segment of u and the

maximal initial segment of v which can be canceled in the product uv both have
length smaller than c.

Lemma 2.21. Let H be a δ-hyperbolic group with respect to a finite generating set
S. If c ∈ R and u, v, w ∈ H are such that uvw = u ·

c
v ·

c
w and |v| > 2c + δ, then

|uvw| > |u| + |v| + |w| − (4c + 2δ).

Proof. Connect the points A = 1, B = u, C = uv and D = uvw by geodesic
segments and consider the geodesic rectangle ABCD. By assumption, |BC| > 2c+δ.
From u ·

c
v and v ·

c
w, we deduce

|AC| > |AB| + |BC| − 2c > |AB| + δ

and

|BD| > |BC| + |CD| − 2c > |CD| + δ,

respectively. From this and the rectangle inequality (Proposition 2.3), we deduce

(|AB| + |BC| − 2c) + (|BC| + |CD| − 2c) < |AC| + |BD| ≤ |BC| + |AD| + 2δ,

which implies

|u| + |v| + |w| − (4c + 2δ) = |AB| + |BC| + |CD| − (4c + 2δ) < |AD| = |uvw|.

Next, we give some results about controlling cancelation that will be used later.
Note that the important point in the following lemma is the constant c being
independent from k.

Lemma 2.22. Let H be a δ-hyperbolic group with respect to a finite generating
set S, and let w, b ∈ H with b �= 1. For every integer k ≥ 0 and every z ∈ H,

14
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there exists x ∈ H and 0 ≤ l ≤ k, such that z−1wbkz = x−1 ·
c
bk−lwbl ·

c
x, where

c = 3δ +µ(|b|)+ |w|+1 (and µ is the computable function given in Corollary 2.15).

Proof. Fix k ≥ 0 and z ∈ H , and let 0 ≤ l ≤ k and x ∈ H be such that
z−1wbkz = x−1bk−lwblx, with the shortest possible length for x; we will prove
that these l and x satisfy the conclusion of the lemma. Suppose they do not, i.e.
suppose that either x−1bk−lwbl = x−1 ·

c
bk−lwbl or bk−lwblx = bk−lwbl ·

c
x is not

true, and let us find a contradiction. We consider only the case where the first of
these expressions fails, i.e. |x−1bk−lwbl| ≤ |x−1| + |bk−lwbl| − 2c; the second case
can be treated analogously.

Consider the points A = 1, B = x−1, C = x−1bk−l, D = x−1bk−lw, E =
x−1bk−lwbl and F = x−1bk−lwblx, and connect them by geodesic segments, forming
a 6-gon. In terms of the geodesic triangle ABE, our assumption says 1

2 (|AB| +
|BE| − |AE|) ≥ c. By δ-hyperbolicity of H , there exist points X1 ∈ [AB] and
X2 ∈ [BE] such that |BX1| = |BX2| = c and |X1X2| ≤ δ. And, by Proposition 2.2
applied to the rectangle BCDE, there exists a point X3 ∈ [BC]∪ [CD]∪ [DE] such
that |X2X3| ≤ 2δ.

Case 1. X3 ∈ [BC] (see Fig. 3). Since C = Bbk−l, Corollary 2.15 implies that there
exists an element X4 = Bbs for some 0 ≤ s ≤ k − l, such that |X3X4| ≤ µ(|b|).
Hence, |X1X4| ≤ |X1X2| + |X2X3| + |X3X4| ≤ 3δ + µ(|b|) < c and z−1wbkz =
X4b

k−l−swbl+sX−1
4 .

Case 2. X3 ∈ [CD]. In this case, take X4 = C and we have |X1X4| ≤ |X1X2| +
|X2X3| + |X3X4| ≤ 3δ + |w| < c as well. Similarly, z−1wbkz = X4wbkX−1

4 .

Case 3. X3 ∈ [DE]. Since E = Dbl, Corollary 2.15 implies again that there exist
an element X4 = Dbs for some 0 ≤ s ≤ l, such that |X3X4| ≤ µ(|b|). Like in Case 1,
we have |X1X4| < c and z−1wbkz = X4b

k−swbsX−1
4 .

In any case, we have found an element X4 ∈ H and a decomposition of z−1wbkz

of the form z−1wbkz = X4b
k−swbsX−1

4 , with 0 ≤ s ≤ k and |X1X4| < c. Since
|X1B| = c, we have

|X4| = |AX4| ≤ |AX1| + |X1X4| < |AX1| + |X1B| = |AB| = |x|,
contradicting the minimality of |x|.

Fig. 3.
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The previous lemma in the particular case of w = 1 says that, for every b, z ∈ H

and every k ≥ 0, there exists x ∈ H such that z−1bkz = x−1 ·
c
bk ·

c
x (where c

is a computable function depending only on δ and |b|). In the following result we
present a technical improvement (which will be crucial later) showing that, in fact,
one can choose a uniform x valid for every k.

Lemma 2.23. Let H be a δ-hyperbolic group with respect to a finite generating set
S, and let z, b ∈ H. There exists an element x ∈ H such that, for every integer k,
we have z−1bkz = x−1 ·

c
bk ·

c
x, where c = δ + µ(|b|).

Proof. Let x−1 be one of the shortest elements in the set G = {z−1bn |n ∈ Z}.
Clearly, z−1bkz = x−1bkx for every k ∈ Z. We show that z−1bkz = x−1 ·

c
bk ·

c
x.

Fix k ∈ Z and denote A = 1, B = x−1, and C = x−1bk. We choose geodesic
segments [AB], [BC] and [AC] and consider the points X ∈ [BA], Y ∈ [BC] such
that |BX | = |BY | = 1

2 (|BA|+ |BC|− |AC|). By δ-hyperbolicity we have |XY | ≤ δ.
By Corollary 2.14, the point Y ∈ [BC] lies at distance at most µ(|b|) from a point
D ∈ G. By the choice of x−1, we have |AB| ≤ |AD| and so

|AX | + |XB| = |AB| ≤ |AD| ≤ |AX | + |XY | + |Y D| ≤ |AX | + δ + µ(|b|).
Hence |XB| ≤ c, i.e. 1

2 (|x−1| + |bk| − |x−1bk|) ≤ c and hence, x−1bk = x−1 ·
c
bk.

Inverting the last element, and changing k by −k, we have bkx = bk ·
c
x. Thus,

x−1bkx = x−1 ·
c
bk ·

c
x.

2.4. The norm and the axis of an element

Definition 2.24. Let H be a torsion-free δ-hyperbolic group with respect to a
finite generating set S, and let g ∈ H . The norm of g, denoted ‖g‖, is defined as

min{d(x, gx) | x ∈ Γ(H, S)}.
The axis of g, denoted Ag, is the set of points x ∈ Γ(H, S) where this minimum is
achieved,

Ag = {x ∈ Γ(H, S)|d(x, gx) = ‖g‖}.
The following facts are easy to see:

(1) Ag ∩ H is nonempty, in particular

‖g‖ = min{|x−1gx‖x ∈ H}.
Moreover, Ag lies in the 1-neighborhood of Ag ∩ H ;

(2) ‖g‖ is a nonnegative integer satisfying 0 ≤ ‖g‖ ≤ |g|. Moreover, ‖g‖ = 0 iff
g = 1;

(3) Ag is CH(g)-invariant: for every x ∈ Ag and h ∈ CH(g) we have hx ∈ Ag;
(4) for any x ∈ Ag, any geodesic segment [x, gx] also lies in Ag;

16
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(5) for any h ∈ H we have ‖hgh−1‖ = ‖g‖ and Ahgh−1 = hAg;
(6) for any g ∈ H and any x ∈ Γ(H, S), we have d(x, gx) ≤ ‖g‖ + 2d(x,Ag).

Lemma 2.25. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S. For any 1 �= g ∈ H, there exists a computable integer r = r(|g|) ≥ 1
such that

∞⋃
k=1

Agk ⊆ 〈g〉B(r).

Proof. By Property (1),
⋃∞

k=1 Agk lies in the 1-neighborhood of
⋃∞

k=1 Agk∩H . The
strategy now is to see that this last set lies at bounded (in terms of |g|) distance from
the centralizer CH(g); and then, we will see that CH(g) lies at bounded distance
from 〈g〉.

Take an arbitrary z ∈ ∪∞
k=1Agk ∩ H . By Properties (1)–(2), there is k ≥ 1 such

that |z−1gkz| is minimal among the lengths of all conjugates of gk (in particular,
|z−1gkz| ≤ |gk|). By Corollary 2.23, there exists x ∈ H such that z−1gkz = x−1 ·

c

gk ·
c
x, where the constant c = c(|g|) is computable and independent from k. Thus,

we have |x−1 ·
c
gk ·

c
x| ≤ |gk|. Let us consider two cases.

Case 1: |gk| > 2c + δ. By Lemma 2.21, |x−1 ·
c
gk ·

c
x| > 2|x| + |gk| − (4c + 2δ).

Therefore |x| < 2c + δ. Moreover, z ∈ CH(g)x.
Case 2: |gk| ≤ 2c + δ. From |z−1gkz| ≤ |gk| and Theorem 2.11, we conclude that
there exists y ∈ H such that z−1gkz = y−1gky and the length of y is bounded by a
computable constant, depending only on |gk| (i.e. on 2c+δ). Moreover, z ∈ CH(g)y.

In both cases, z lies at bounded (in terms of |g|) distance from CH(g).
It remains to prove that CH(g) is at bounded distance from 〈g〉. Let z ∈ CH(g).

By Lemma 2.13, there exists a (computable) natural number s ≤ �B(4δ), such that
gs is not conjugate into the ball B(4δ). In this situation, in [3, Proof of Corol-
lary 3.10, Chap. III.F] shows that the distance from z to the set 〈gs〉 is at most
2|gs| + 4δ. Hence, the distance from z to 〈g〉 is bounded by a computable constant
depending only on δ, �S and |g|.

From this lemma, it is easy to deduce the following corollaries.

Corollary 2.26. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S. For any 1 �= g ∈ H and any integer k �= 0, there exists an element
x ∈ Agk ∩ H of length at most r(|g|).

Corollary 2.27. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S. For any 1 �= g ∈ H and any integer k �= 0, we have ‖gk‖ ≥
|gk| − 2r(|g|).

17
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Proof. Take the element x from Corollary 2.26. Then ‖gk‖ = d(x, gkx) =
|x−1gkx| ≥ |gk| − 2|x| ≥ |gk| − 2r(|g|).

Corollary 2.28. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S. For any 1 �= g ∈ H and any C > 0, there exists a computable
integer k0 = k0(|g|, C) such that for any k > k0, we have ‖gk‖ > C.

Proof. Using Corollary 2.27 and Proposition 2.12 complemented with Lemma 2.14,
we deduce ‖gk‖ ≥ |gk| − 2r(|g|) ≥ 1

λk − ε − 2r(|g|) for every k > 0, where λ, ε and
r are computable functions of |g|. Now, the result follows easily.

Corollary 2.29. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S. There exist computable functions f1 : N → N and f2 : N → N

such that, for every 1 �= g ∈ H and every natural numbers s, t > 0, we have

‖gs+t‖ − f1(|g|) ≤ ‖gs‖ + ‖gt‖ ≤ ‖gs+t‖ + f2(|g|).

Proof. Take f1(n) = 4r(n) and the first inequality follows from Corollary 2.27:

‖gs+t‖ ≤ |gs+t| ≤ |gs| + |gt| ≤ ‖gs‖ + ‖gt‖ + 4r(|g|).
And taking f2(n) = 2r(n) + 2µ(n), the second inequality follows from
Corollaries 2.27 and 2.16:

‖gs‖ + ‖gt‖ ≤ |gs| + |gt| ≤ |gs+t| + 2µ(|g|) ≤ ‖gs+t‖ + 2r(|g|) + 2µ(|g|).

Next, we will state several lemmas about distances to axes.

Lemma 2.30. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S. Let 1 �= g ∈ H, let A be a point in Γ(H, S), and let B be a point
in Ag at minimal distance from A. Then, for every geodesic segment [BC] ⊂ Ag,

we have

|AC| ≥ |AB| + |BC| − 2δ.

Proof. Consider a given geodesic segment [BC] contained in Ag, and choose
geodesic segments [AB] and [AC]. Let X ∈ [BA] and Y ∈ [BC] be points such
that |BX | = |BY | = 1

2 (|BA| + |BC| − |AC|). Then |XY | ≤ δ. Since the point Y

also lies on Ag, we have that |AB| ≤ |AY |. Therefore, |XB| ≤ |XY | ≤ δ. Thus,

|AC| = |AB| + |BC| − 2|BX | ≥ |AB| + |BC| − 2δ.

Lemma 2.31. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S. Let g ∈ H, and let k be an integer number such that ‖gk‖ > 5δ.
Let A be an element of H, and n ≥ 0 be such that d(A, gkA) = ‖gk‖ + n. Then,

A = gtv for some t ∈ Z and v ∈ H with |v| ≤ n
2 +3δ+r(|g|), where r is the function

introduced in Lemma 2.25.
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Proof. By the hypothesis, g �= 1. Let B be a point in Agk at minimal distance
from A. Let C = gkB and D = gkA. Since C ∈ Ag is at minimal distance from D

(the same as |AB|), Lemma 2.30 tells us that

|AC| ≥ |AB| + |BC| − 2δ

and

|DB | ≥ |CD | + |BC| − 2δ.

Moreover, |BC| = ‖gk‖ > 5δ. Therefore, by Lemma 2.4 applied to points A, B, C, D,
we deduce

|AD| ≥ |AB| + |BC| + |CD| − 6δ

= 2|AB| + ‖gk‖ − 6δ.

Hence, |AB| ≤ n
2 + 3δ. By Lemma 2.25, B lies at distance at most r(|g|) from

〈g〉. Hence, A lies at distance at most n
2 + 3δ + r(|g|) from 〈g〉. This completes the

proof.

Lemma 2.32. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S, and let g ∈ H with ‖g‖ > 5δ. Then the middle point of any geodesic
segment [A, gA], where A is a point of Γ(H, S), lies in the (5δ)-neighborhood of the
axis Ag.

Proof. By the hypothesis, g �= 1. Let B be a point in Ag at minimal distance from
A. Let C = gB and D = gA. Exactly like in the previous lemma, we obtain

2|AB| + |BC| ≤ |AD| + 6δ. (5)

Now, take geodesic segments [AD] and [BC], and let M and N be their middle
points, respectively. Clearly, N ∈ Ag. In order to estimate the distance |NM |, we
consider the geodesic rectangle AMDN . By the rectangle inequality, we have

|NM | + |AD| ≤ max{|AM | + |DN |, |DM | + |AN |} + 2δ

= max
{

1
2
|AD| + |DN |, 1

2
|AD| + |AN |

}
+ 2δ.

But |AN | ≤ |AB| + |BN | = |AB| + 1
2 |BC|. Therefore from (5), we have |AN | ≤

1
2 |AD| + 3δ. Analogously, |DN | ≤ 1

2 |AD| + 3δ. From all this we deduce

|NM | + |AD| ≤ 1
2
|AD| + 1

2
|AD| + 3δ + 2δ.

Thus, |NM | ≤ 5δ.
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Proposition 2.33. Let H be a torsion-free δ-hyperbolic group with respect to a
finite generating set S, and let g, h ∈ H with ‖g‖ > 15δ, ‖h‖ > 15δ and ‖gh‖ > 5δ.
Then the distance between the axes Ag and Ah is at most

max
{

15δ,
1
2
(‖gh‖ − ‖g‖ − ‖h‖) + 18δ

}
.

Proof. By the hypotheses, g, h and gh are all nontrivial. Let d = d(Ag,Ah), and
let X ∈ Ah and Y ∈ Ag be such that |XY | = d. If d ≤ 15δ, we are done so, let us
assume d > 15δ.

Consider the points A1 = X , A2 = Y , A3 = gY , A4 = gX , A5 = ghX ,
A6 = ghY , A7 = ghgY , A8 = ghgX , and A9 = ghghX . By Lemma 2.30 and doing
the appropriate translation, we have |Ai−1Ai+1| ≥ |Ai−1Ai| + |AiAi+1| − 2δ for
every i = 2, . . . , 8. Moreover, |Ai−1Ai| equals either d, or ‖g‖, or ‖h‖ which are all
bigger than 15δ. So, Lemma 2.4 tells us that

d(A1, A9) = d(X, (gh)2X) ≥ d(X, Y ) + d(Y, gY ) + d(gY, gX) + d(gX, ghX)

+ d(ghX, ghY ) + d(ghY, ghgY ) + d(ghgY, ghgX)

+ d(ghgX, ghghX)− 26δ

= 2(d + ‖g‖ + d + ‖h‖)− 26δ.

On the other hand,

d(A1, A5) = d(X, ghX) ≤ d(X, Y ) + d(Y, gY ) + d(gY, gX) + d(gX, ghX)

= d + ‖g‖ + d + ‖h‖.
Let now [A1A5] be a geodesic segment, and consider its translation (gh)[A1A5],
say [A5A9]. Let M be the middle point of [A1A5] and M ′ = ghM be the middle
point of [A5A9]. Since 1

2d(A1, A5) = d(A1, M) = d(M, A5) = d(M ′, A9), using the
previous inequalities we have

d(M, M ′) ≥ d(A1, A9) − d(A1, M) − d(M ′, A9)
= d(A1, A9) − d(A1, A5)
≥ 2d + ‖g‖ + ‖h‖ − 26δ.

Finally, by Lemma 2.32, M lies at distance at most 5δ from the axis Agh. Therefore,
d(M, M ′) = d(M, ghM) ≤ 10δ + ‖gh‖. Hence d ≤ 1

2 (‖gh‖ − ‖g‖ − ‖h‖) + 18δ.

3. Auxiliary Statements

In this section we prove statements which will be used in Sec. 4. In particular we
prove Proposition 3.3 which will be used in the proof of Theorem 4.5.

Let us start with the following lemma, which considers the situation where the
product of conjugates of two powers of a given element equals the product of these
powers, and analyzes how the involved conjugators must look like.

Lemma 3.1. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S. There exists a computable function � : N → R

+ with the following
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property: for any three elements b, x, y ∈ H and any two positive integers s, t, which
satisfy ‖bs‖, ‖bt‖ > 15δ, ‖bs+t‖ > 5δ and

(x · bs · x−1)(y · bt · y−1) = bs+t, (6)

there exist integers n1, n2, n3, n4 and elements vx, vy ∈ H of length at most �(|b|)
such that

x = bn1vxbn2 and y = bn3vybn4 .

Proof. Let b, x, y and s, t be as in the statement (in particular, b �= 1). Consider
the axes Axbsx−1 = xAbs and Aybty−1 = yAbt . By Proposition 2.33 applied to the
elements xbsx−1 and ybty−1 (note that ‖xbsx−1‖ = ‖bs‖ > 15δ, ‖ybty−1‖ = ‖bt‖ >

15δ and ‖(xbsx−1)(ybty−1)‖ = ‖bs+t‖ > 5δ by hypothesis), the distance between
xAbs and yAbt is at most

max
{

15δ,
1
2
(‖bs+t‖ − ‖bs‖ − ‖bt‖) + 18δ

}
.

By Corollary 2.29, this value does not exceed 1
2f1(|b|)+18δ, an upper bound which

is independent from s and t.
Now, take an element Q ∈ yAbt ∩ H such that d(Q, xAbs) ≤ 1

2f1(|b|) + 18δ +1,
and set P = (ybty−1)−1Q. In particular, P ∈ yAbt ∩ H and d(P, Q) = ‖ybty−1‖ =
‖bt‖. Then we have

d(P, bs+tP ) = d(P, (xbsx−1)(ybty−1)P ) = d(P, (xbsx−1)Q)

≤ d(P, Q) + d(Q, (xbsx−1)Q)

≤ d(P, Q) + 2d(Q,Axbsx−1) + ‖bs‖
≤ ‖bt‖ + ‖bs‖ + f1(|b|) + 36δ + 2

≤ ‖bs+t‖ + f1(|b|) + f2(|b|) + 36δ + 2,

where the last inequality uses Corollary 2.29 again. Next, apply Lemma 2.31 to
conclude that P = bn3v1 for some n3 ∈ Z and v1 ∈ H with |v1| ≤ 1

2f1(|b|) +
1
2f2(|b|) + r(|b|) + 21δ + 1. And since P ∈ yAbt ∩ H , we deduce from Lemma 2.25
that y−1P = b−n4v2, for some n4 ∈ Z and v2 ∈ H with |v2| ≤ r(|b|). Hence,

y = bn3vybn4 ,

where vy = v1v
−1
2 has length bounded by

|vy | = |v1v
−1
2 | ≤ |v1| + |v2| ≤ 1

2
f1(|b|) +

1
2
f2(|b|) + 2r(|b|) + 21δ + 1.

Finally, inverting and replacing b to b−1 in Eq. (6), we obtain again the same
equation with x and y interchanged. So, the same argument shows that

x = bn1vxbn2 ,

for some n1, n2 ∈ Z and some vx ∈ H with the same upper bound for its length.
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Hence, the function �(n) = 1
2f1(n) + 1

2f2(n) + 2r(n) + 21δ + 1 satisfies the
statement of the lemma.

Corollary 3.2. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S. There exists a computable function � : N → R

+ with the fol-
lowing property: if b, x1, x2, x3 ∈ H and 0 �= m1, m2, m3 ∈ Z are such that
‖bm1‖, ‖bm2‖, ‖bm3‖ > 15δ, x1x2x3 = 1, m1+m2+m3 = 0, and x1b

m1x2b
m2x3b

m3 =
1, then each of the xi can be written in the form bn1ubn2vbn3 , where n1, n2, n3 ∈ Z,

and both u, v have length at most �(|b|).

Proof. Inverting the last equation and cyclically permuting if necessary, we may
assume that m1 > 0 and m2 > 0. Now, Lemma 3.1 gives the conclusion.

Proposition 3.3. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S. Then, for any g ∈ H, there is a computable constant C = C(|g|) >

0 with the following property: for every a, b ∈ 〈g〉 with ‖a‖, ‖b‖, ‖ab±1‖ > 15δ, and
every conjugate b∗ of b, if abs

∗ is conjugate to abs for every s = −C, . . . , C, then
b∗ = b.

Proof. Let a = gn and b = gm (with n, m �= 0 and n �= ±m), and let b∗ = x−1bx

for some x ∈ H (which can always be multiplied on the left by a power of b).
We may assume n, m > 0. Indeed, if n < 0, we replace g by g−1, and n by −n,

and m by −m; the statement does not change and we get n > 0. If then m < 0, we
replace b by b−1 = g−m and b∗ by b−1∗ ; again the statement does not change and
we get m > 0.

So, let us assume n, m > 0, ‖a‖, ‖b‖, ‖ab±1‖ > 15δ, and abs
∗ being conjugate to

abs for every s = −C, . . . , C, where C is yet to be determined.
Taking C ≥ 1, we have ab−1

∗ conjugate to ab−1, that is, gn · x−1g−mx =
h−1gn−mh for some h ∈ H . Rewrite this last equation into the following two forms

xh−1gm−nhx−1 · xgnx−1 = gm, (7)

h−1gn−mh · x−1gmx = gn. (8)

If m > n, then from Eq. (7) and Lemma 3.1, we get

x = gpvgq

for some p, q ∈ Z and v ∈ H with |v| ≤ �(|g|). Otherwise, m < n and then from
Eq. (8) and Lemma 3.1, we get the same expression for x. Replacing x by g−px,
we can assume p = 0, i.e. x = vgq. And now, replacing b∗ by gqb∗g−q, which does
not affect neither the hypothesis nor the conclusion of the proposition (recall that
both a and b are powers of g), we may assume that x = v, |v| ≤ �(|g|).

Let us impose that abs∗ and abs = gn+sm are conjugate, for some positive value
of s. By Lemma 2.23, there exists zs ∈ H such that

gn · x−1gsmx = abs
∗ = z−1

s ·
c
gn+sm ·

c
zs, (9)
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where the constant c depends only on |g|, δ and �S. By Proposition 2.12 and
Lemma 2.14, we can compute a constant C0 such that |gn+sm| > 2c + δ, for every
s ≥ C0. Taking at least this value for C, and using Lemma 2.21 and Corollary 2.16,
we deduce that

|gn| + |gsm| + 2|x| ≥ |abs
∗| > |gn+sm| + 2|zs| − (4c + 2δ) ≥ |gn|

+ |gsm| − 2µ + 2|zs| − (4c + 2δ),

where µ = µ(|g|) is the computable function from Corollary 2.15. Hence, |zs| ≤
�(|g|) + µ(|g|) + 2c + δ.

Finally, take C = C0 + �B(�(|g|) + µ(|g|)+ 2c+ δ
)
. Having abs

∗ conjugate to abs

for every s = −C, . . . , C, we obtain elements zs, s = C0, . . . , C, all of them in the
ball B

(
�(|g|) + µ(|g|) + 2c + δ

)
by the previous paragraph.

Hence, there must be a repetition, i.e. there exist C0 < s1 < s2 < C such that
zs1 = zs2 (denote it by z). We have

abs1∗ = z−1gn+s1mz (10)

and

abs2∗ = z−1gn+s2mz,

from which we deduce

bs2−s1∗ = z−1gm(s2−s1)z.

This implies b∗ = z−1gmz, and then (10) implies a = z−1gnz. Since a = gn, the
element z commutes with g and so, again from (10), b∗ = b.

4. The Main Theorem for Two Words

The following lemma is a preliminary step in proving the main result for the case of
two words (Theorem 4.5). Note that Eqs. (11) and (12) in its formulation have the
following common form: the product of certain conjugates of two elements equals
the product of these two elements.

Lemma 4.1. Let H be a torsion-free δ-hyperbolic group with respect to a finite gen-
erating set S, and let b, w ∈ H. There exists a computable constant M = M(|b|, |w|)
such that the following holds: if b∗ is conjugate to b (say b∗ = h−1bh), and wbk

∗ is
conjugate to wbk for every k = 1, . . . , M, then there exists an element d ∈ H and
integers m, s, t, such that s + t > 0 and

(d · bs · d−1)(dw · bt · w−1d−1) = bs+t, (11)

(d−1h · w · h−1d)(d−1 · bm · d) = wbm. (12)

Proof. The result is obvious if b = 1. Let us assume b �= 1.
If we prove the statement for a particular conjugator h, then we immediately

have the same result for an arbitrary other, just replacing h to bqh and d to bqd

(for q rational). So, we can choose our favorite h.
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By Lemma 2.23, there exists a conjugator h ∈ H such that for any integer
k ≥ 0, we have bk

∗ = h−1 ·
c
bk ·

c
h, where c = δ + µ(|b|). Let us show the result for

this particular h. Since this expression remains valid while enlarging the constant
c, we shall consider it with c = 3δ + µ(|b|) + |w| + 1 in order to match with other
calculations below. Thus,

wbk
∗ = w

(
h−1 ·

c
bk ·

c
h
)
, (13)

for every k ≥ 0. Suppose that wbk
∗ is conjugate to wbk for every k = 1, . . . , M ,

where M is still to be determined. Then, by Lemma 2.22, for each of these k’s,
there exist an element ek ∈ H and an integer lk, such that 0 ≤ lk ≤ k and

wbk
∗ = e−1

k ·
c
(bk−lkwblk) ·

c
ek. (14)

We will show, that for large enough M , we will have ei = ej for some pair of
integers i �= j. By Corollary 2.18, Proposition 2.12 and Lemma 2.14, there exists a
computable constant k0 = k0(|b|, |w|) > 0 such that both |bk−lkwblk | and |bk| are
bigger than 2c + δ for all k ≥ k0.

We introduce the following notation: for two sequences of elements uk ∈ H

and vk ∈ H (where k runs through a subset of N) we write uk ≈ vk if |u−1
k vk| is

bounded from above by a computable function, depending on δ, �S, w, and b only
(so, in particular, not depending on k). The function will be clear from the context.
Similarly, we write |uk| ≈ |vk| if ‖uk|−|vk‖ is bounded from above by a computable
function, depending on the same arguments.

Take k ≥ k0. Then from (13) and (14), and with the help of Lemma 2.21, we
deduce

|wbk
∗ | ≈ 2|h| + |bk|

and

|wbk
∗ | ≈ 2|ek| + |bk−lkwblk | ≈ 2|ek| + |bk|,

where the last approximation is due to Corollaries 2.16 and 2.18. Therefore
|ek| ≈ |h|.

Now we will prove that e−1
k ≈ h−1. For that, we realize the right-hand side

of (13) in the Cayley graph Γ(H, S) as the path starting at 1 and consisting of 4
consecutive geodesics with labels equal in H to the elements w, h−1, bk, and h.
Analogously, we realize the right-hand side of (14) as the path starting at 1 and
consisting of 3 consecutive geodesics with labels equal in H to the elements e−1

k ,
bk−lkwblk and ek (see Fig. 4).

Both paths are (λ, ε)-quasi-geodesics connecting 1 and C = wbk
∗ , where λ and ε

are computable and depending only on c. We choose a geodesic [1, C] and denote
X = wh−1bk, Y = e−1

k bk−lkwblk .
By Proposition 2.7, these quasigeodesics are both at bounded distance R =

R(δ, c) from the segment [1, C]. Therefore there are points A, B ∈ [1, C], such that
|XA| ≤ R and |Y B| ≤ R. In our notations we can write |XA| ≈ 0 and |Y B| ≈ 0.
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Fig. 4.

Therefore |AC| ≈ |XC| = |h| and |BC| ≈ |Y C| = |ek|. Since |h| ≈ |ek|, we have
|AC| ≈ |BC| and so |AB| ≈ 0. Hence, |he−1

k | = |XY | ≤ |XA| + |AB| + |BY | ≈ 0.
This means that e−1

k ≈ h−1 and so, e−1
k lies in the ball with center h−1 and radius

depending only on |b| and |w|.
Let M be 1 + k0 plus the number of elements in this ball. There must exist

k0 ≤ k1 < k2 ≤ M such that ek1 = ek2 . Denote this element by e and, rewriting
Eq. (14) for these two special values of k,

wbk1∗ = e−1(bk1−lk1 wblk1 )e (15)

and

wbk2∗ = e−1(bk2−lk2 wblk2 )e,

we get

bk2−k1∗ = e−1(b−lk1 w−1bk2−k1+lk1−lk2 wblk2 )e.

Let s = k2 − k1 + lk1 − lk2 and t = lk2 − lk1 (so s + t > 0). Recalling that
bk2−k1∗ = h−1bk2−k1h, we can rewrite the previous equation as

he−1b−lk1w−1bswbtblk1 eh−1 = bs+t.

Setting d = he−1b−lk1w−1, we deduce (dbsd−1) · (dwbtw−1d−1) = bs+t, which is
Eq. (11). And using Eq. (15), the definition of d and bk1∗ = h−1bk1h, we obtain
(d−1hwh−1d) · (d−1bk1d) = wbk1 , which is Eq. (12) with m = k1.

Now, using (11) and (12) and distinguishing the cases st �= 0 or st = 0, we will
obtain more information about relations between w, b and h.

Proposition 4.2. Let H be a torsion-free δ-hyperbolic group with respect to a
finite generating set S and let b, w, d be elements of H satisfying Eq. (11). Suppose
additionally that ‖bk‖ > 15δ for all k > 0, and that st �= 0. Then, there exist
integers p, q, r, and elements u, v ∈ H of length at most �(|b|), such that

w = bpubrvbq.

Proof. This follows directly from Corollary 3.2.

Proposition 4.3. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S and let b, w, d, h be elements of H satisfying Eqs. (11) and (12)
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with s + t > 0. Suppose additionally that st = 0. Then h = bpwq for some rational
numbers p, q.

Proof. Let us distinguish two cases.
Case 1. s = 0. In this case, Eq. (11) says that dw commutes with b. So, dw = bp

for some rational p. Plugging this into Eq. (12), we obtain hwh−1 = bp+mwb−p−m.
Hence, b−p−mh commutes with w and the result follows.
Case 2. t = 0. In this case, Eq. (11) says that d commutes with b. So, d = bp for
some rational p. Plugging this into Eq. (12), we obtain b−phwh−1bp = w. Hence,
b−ph commutes with w and the result follows.

Next, we need to obtain some extra information by applying Lemma 4.1 to
sufficiently many different elements w. To achieve this goal, given a pair of elements
a, b ∈ H , we consider the finite set

W = {(aib)2j | 1 ≤ i ≤ 1 + N, 1 ≤ j ≤ 1 + 3N2} ⊆ 〈a, b〉 ≤ H,

where

N = N(|b|) = �B (�(|b|)),

and � is the function from Lemma 3.1. Let us systematically apply Lemma 4.1 to
every w ∈ W .

Lemma 4.4. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S. Let a, b ∈ H be elements generating a free subgroup of rank 2,

and with ‖bk‖ > 15δ for all k > 0. Suppose that for every w ∈ W , there exists a
conjugate b∗ of b such that the elements w, b, b∗ satisfy the hypothesis of Lemma 4.1
(i.e. wbk

∗ is conjugate to wbk, for every integer k = 1, . . . , M(|b|, |w|)). Then, for at
least one such w ∈ W , the conclusion of Lemma 4.1 holds with st = 0.

Proof. Under the hypothesis of the lemma, suppose that we have Eqs. (11)
and (12) with st �= 0 for every w ∈ W , and let us find a contradiction.

Write W =
⊔1+N

i=1 Wi, where Wi = {(aib)2j | 1 ≤ j ≤ 1 + 3N2}, and fix a value
for i ∈ {1, . . . , N + 1}.

By Proposition 4.2, for every w ∈ Wi, there exist integers p, q, r, and elements
u, v ∈ H of length at most �(|b|) such that

bpwbq = ubrv (16)

(of course, these integers and elements depend on w). Since �Wi = 1 + 3N2 >

3(�B(�(|b|)))2 (because 〈a, b〉 is free of rank 2) and the lengths of u and v are at
most �(|b|), there must exist four diferent elements of Wi with the same u and v.
That is, there exists w1 = (aib)σ, w2 = (aib)τ , w3 = (aib)σ′

, and w4 = (aib)τ ′
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(where the exponents 0 < σ < τ < σ′ < τ ′ all differ at least 2 from each other)
such that

bp1w1b
q1 = ubr1v, bp2w2b

q2 = ubr2v,

bp3w3b
q3 = ubr3v, bp4w4b

q4 = ubr4v.

Combining these equations, we get

bp2w2b
q2−q1w−1

1 b−p1 = ubr2−r1u−1,

bp4w4b
q4−q3w−1

3 b−p3 = ubr4−r3u−1.
(17)

Hence, the left-hand sides of these two equations commute. Let us rewrite them in
the form

x = bα(aib)τ bβ(aib)−σbγ ,

x′ = bα′
(aib)τ ′

bβ′
(aib)−σ′

bγ′
,

where 0 < σ < τ and 0 < σ′ < τ ′ all differ at least 2 from each other (and we
have no specific information about the integers α, β, γ, α′, β′, γ′). The key point
here is that this commutativity relation between x and x′ happens inside the free
group 〈a, b〉.

Consider now the monomorphism 〈a, b〉 → 〈a, b〉 given by a 
→ aib, b 
→ b.
Since x and x′ both lie in its image, and commute, their preimages, namely y =
bαaτbβa−σbγ and y′ = bα′

aτ ′
bβ′

a−σ′
bγ′

, must also commute.
Suppose ββ′ �= 0. Then, y is not a proper power in 〈a, b〉 (in fact, its cyclic

reduction is either aτbβa−σbα+γ with α + γ �= 0 or aτ−σbβ, which are clearly not
proper powers). Similarly, y′ is not a proper power either. Then the commutativity
of y and y′ forces y = y′±1, which is obviously not the case. Hence, ββ′ = 0. Without
loss of generality, we can assume β = 0.

Let us go back to Eq. (17) which particularized to this special case, reads

bα(aib)τb0(aib)−σbγ = ubθu−1,

where θ = r2 − r1, that is,

bα(aib)ρbγ = ubθu−1, (18)

where ρ = τ − σ ≥ 2. Recall that all these arguments were started for a fixed value
of i and that the corresponding element u (which depends on the chosen i) has
length at most �(|b|).

Finally, it is time to move i = 1, . . . , 1+N . Since 1+N > �B(�(|b|)), there must
exist two indices 1 ≤ i1 < i2 ≤ 1 + N giving the same u. Equation (18) in these
two special cases is

bα(ai1b)ρbγ = ubθu−1

and

bᾱ(ai2b)ρ̄bγ̄ = ubθ̄u−1,

where ρ, ρ̄ ≥ 2 and 1 ≤ i1 < i2. Again, z = bα(ai1b)ρbγ and z̄ = bᾱ(ai2b)ρ̄bγ̄

commute. Since i1, i2, ρ and ρ̄ are all positive, this implies that some positive power
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of z equals some positive power of z̄. But it is straightforward to see that (after
all possible reductions) the first a-syllable of any positive power of z is ai1 (here
we use ρ ≥ 2); similarly the first a-syllable of any positive power of z̄ is ai2 . Since
i1 �= i2, this is a contradiction and the proof is completed.

Now, we can already prove the main Theorem 1.2, in the special case n = 2.

Theorem 4.5. Let H be a torsion-free δ-hyperbolic group with respect to a finite
generating set S, and consider four elements a, b, a∗, b∗ ∈ H such that a∗ is con-
jugate to a, and b∗ is conjugate to b. There exists a computable constant L (only
depending on |a|, |b|, δ and �S), such that if (ai

∗b
l
∗)

jbk
∗ is also conjugate to (aibl)jbk

for every i, j, k, l = −L, . . . , L then there exists a uniform conjugator g ∈ H with
a∗ = g−1ag and b∗ = g−1bg (i.e. (a∗, b∗) is conjugate to (a, b)).

Proof. The conclusion is obvious if a or b is trivial. So, let us assume a �= 1 and
b �= 1. Note that 〈a〉 = 〈b〉 is allowed.

Suppose that (ai∗bl∗)jbk∗ is conjugate to (aibl)jbk for every i, j, k, l = −L, . . . , L,
where L is still to be determined. We shall prove the result imposing several times
that L is big enough, in a constructive way. At the end, collecting together all these
requirements, we shall propose a valid value for L.

Since H is torsion-free, every nontrivial element has infinite cyclic centralizer
(see Proposition 2.17). Let a1, b1 be generators of CH(a) and CH(b). Inverting a1

or a2 if necessary, we may assume that a = ap
1 and b = bq

1 for positive p and q.
By Corollary 2.28, there exists a computable natural number r0 such that for every
r ≥ r0, ‖ar

1‖ > 15δ and ‖br
1‖ > 15δ. So, after replacing a, b, a∗, b∗ by ar0 , br0 , ar0∗ , br0∗ ,

we can assume that ‖ar‖ > 15δ and ‖br‖ > 15δ for every r �= 0. Moreover, if
a, b generate a cyclic group, then after the above replacement either a = b or
‖ab−1‖ > 15δ. Analogously, either a = b−1, or ‖ab‖ > 15δ.

For every word w on a and b, let us denote by w∗ the corresponding word on a∗
and b∗. Now, observe that we can uniformly conjugate a∗ and b∗ by any element of
H (and abuse notation denoting the result a∗ and b∗ again), and both the hypothesis
and conclusion of the theorem does not change. In particular, for any chosen word
of the form w = (aibl)jbk (with i, j, k, l = −L, . . . , L), we can assume that w∗ = w

(of course, with an underlying a∗ and b∗ now depending on w); when doing this,
we say that we center the notation on w. Note that centering notation does not
change a, b, therefore the constant L is not affected.

Let us distinguish two cases.
Case 1. 〈a, b〉 is a cyclic group, say 〈g〉. Centering the notation on a, we may
assume that a∗ = a. If a = bε, where ε = ±1, then we use that ab−ε

∗ is conjugate
to ab−ε = 1 and deduce immediately that b∗ = b. Now, assume that a �= b±1,
and so ‖ab±1‖ > 15δ. Part of our hypothesis says that a∗bl

∗ = abl
∗ is conjugate to

abl for every l = −L, . . . , L. Hence, taking L bigger than or equal to the constant
C = C(|g|) from Proposition 3.3, we obtain b∗ = b. This concludes the proof in this
case.
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Case 2. 〈a, b〉 is not cyclic. By Proposition 2.10, there exists a sufficiently big
and computable natural number p such that 〈ap, bp〉 is a free subgroup of H of
rank 2. Note that, multiplying the constant by p, and using the uniqueness of root
extraction in H , the result follows from the same result applied to the elements
ap, bp and ap

∗, b
p
∗. So, after replacing a, b, a∗, b∗ by ap, bp, ap

∗, b
p
∗, we can assume that

F2 � 〈a, b〉 ≤ H .
With these gained assumptions, let us show that any constant

L ≥ max{2 + 6N2, max
w∈W

M(|b|, |w|)},

works for our purposes, where the number N and the set W are defined before
Lemma 4.4, and the function M is defined in Lemma 4.1.

Part of our hypothesis says that, for every w = (aib)2j ∈ W , w∗bk∗ = (ai∗b∗)2jbk∗
is conjugate to wbk for every k = 1, . . . , M(|b|, |w|).

Fix w ∈ W . Centering the notation on this w, we have that wbk
∗ (= w∗bk

∗) is
conjugate to wbk for every k = 1, . . . , M(|b|, |w|). That is, w satisfies the hypothesis
of Lemma 4.1 (with the corresponding value of b∗). And this happens for every
w ∈ W . Thus, Lemma 4.4 ensures us that the conclusion of Lemma 4.1 holds with
st = 0 for at least one w0 = (ai0b)2j0 ∈ W , 1 ≤ i0 ≤ 1 + N , 1 ≤ j0 ≤ 1 + 3N2

(note that Lemma 4.4 can be applied because we previously gained the assumptions
‖br‖ > 15δ for every r �= 0, and F2 � 〈a, b〉 ≤ H). For the rest of the proof, let us
center the notation on this particular w0.

Using Proposition 4.3, we conclude that every conjugator from b to b∗ (say b∗ =
h−1bh) is of the form h = bpwq

0 for some rational numbers p, q. Hence, w−q
0 bwq

0 = b∗.
Then,

((w−q
0 awq

0)
i0b∗)2j0 = w−q

0 (ai0b)2j0wq
0 = w−q

0 w0w
q
0 = w0 = w0∗ = (ai0∗ b∗)2j0 .

Extracting roots twice, we conclude that w−q
0 awq

0 = a∗. Thus, wq
0 is a uniform

right conjugator from (a, b) to (a∗, b∗). This concludes the proof for this second
case.

5. Main Theorem for Several Words

Finally, we extend the result to arbitrary tuples of words, thus proving the main
result of the paper.

Proof of Theorem 1.2. The implication to the right is obvious (without any
bound on the length of W ).

Let A = {a1, . . . , an}, and assume that W (a1∗, . . . , an∗) is conjugate to
W (a1, . . . , an) for every word W in n variables and length up to a constant yet
to be determined. As above, we shall prove the result assuming several times this
constant to be big enough, in a constructive way. The reader can collect together
all these requirements, and find out a valid explicit value (which will depend only
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on δ, �S and
∑n

i=1 |ai|). Decreasing n if necessary, we may assume that all ai are
nontrivial. If n = 1, there is nothing to prove, so assume n ≥ 2.

Suppose the elements a1, . . . , an generate a cyclic group, say 〈a1, . . . , an〉 ≤
〈g〉 ≤ H , with g root-free. Applying Theorem 4.5 to every pair a1, aj , we get a
computable constant such that if W (a1∗, aj∗) is conjugate to W (a1, aj) for every
word W of length up to this constant, then a1 and aj admit a common conjugator,
say xj . Taking the maximum of these constants over all j = 2, . . . , n, we are done
because x−1

j a1xj = a1∗ and x−1
j ajxj = aj∗ for j = 2, . . . , n imply that x2x

−1
j ∈

CH(a1) = 〈g〉, and hence x−1
2 ajx2 = x−1

j (xjx
−1
2 ajx2x

−1
j )xj = x−1

j ajxj = aj∗ for
j = 2, . . . , n; thus, x2 becomes a common conjugator.

So, we are reduced to the case where two elements of A, say a1 and a2, generate a
noncyclic group. In this case, by Proposition 2.10, there is a big enough computable
m such that 〈am

1 , am
2 〉 is a free group of rank 2. Replacing a1, a2 by am

1 , am
2 and

a1∗, a2∗ by am
1∗, a

m
2∗, and multiplying the computable constant by m, we may assume

that 〈a1, a2〉 is free of rank 2.
By Theorem 4.5 (and taking the constant appropriately big), a1 and a2 admit

a common conjugator. So, conjugating the whole tuple a1∗, . . . , an∗ accordingly, we
may assume that a1∗ = a1 and a2∗ = a2. We will prove that aj∗ = aj for every
j = 3, . . . n as well.

By Lemma 2.19 twice, there exists a big enough computable k ≥ 2 such
that the elements a1a

k
2 and a2(a1a

k
2)k are root-free (and form a new basis for

〈a1, a2〉). Replacing a1 by a1a
k
2 and a1∗ by a1∗ak

2∗, and a2 by a2(a1a
k
2)k and a2∗

by a2∗(a1∗ak
2∗)

k, and updating the constant, we may assume that both a1 and a2

are root-free in H .
For every j ≥ 3, let us apply Theorem 4.5 to the pairs (a1, aj) and (a1∗ =

a1, aj∗); we obtain xj ∈ CH(a1) = 〈a1〉 such that aj∗ = x−1
j ajxj . Analogously,

playing with the pair of indices 2, j, we get yj ∈ CH(a2) = 〈a2〉 such that aj∗ =
y−1

j ajyj . In particular, xj = a
pj

1 and yj = a
qj

2 for some integers pj , qj . Furthermore,
xjy

−1
j ∈ CH(aj), that is, a

pj

1 a
−qj

2 = a
rj

j for some rational rj . Note that if pjqj = 0,

then aj∗ = aj as we want.
Again by Lemma 2.19, there are big enough computable k′, k′′ ≥ 2 such that

b1 = a1a
k′
2 and b2 = a2(a1a

k′
2 )k′′

are again root-free in H . Arguing like in the
previous paragraph with these new elements, we deduce a similar conclusion: for
each j = 3, . . . , n, either aj∗ = aj , or b

p′
j

1 b
−q′

j

2 = a
r′

j

j for some nonzero integers p′j , q
′
j

and some rational r′j .
Thus, for each j = 3, . . . , n, we either have (1) aj∗ = aj, or (2) a

pj

1 a
−qj

2 = a
rj

j

and b
p′

j

1 b
−q′

j

2 = a
r′

j

j for some nonzero integers pj , qj , p
′
j, q

′
j and some rationals rj , r

′
j .

But this last possibility would imply that the elements a
pj

1 a
−qj

2 and b
p′

j

1 b
−q′

j

2 =
(a1a

k′
2 )p′

j (a2(a1a
k′
2 )k′′

)−q′
j commute in the free group 〈a1, a2〉, which is not the case,

taking into account that pjqjp
′
jq

′
jk

′k′′ �= 0. Therefore, aj∗ = aj for each j = 1, . . . , n

and the proof is complete.
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6. Proof of Theorem 1.3

Let (ui,j) and (vi,j), where i = 1, . . . , n, j = 1, . . . , mi, be two lists of elements in
H , divided in n blocks, see (1). We shall decide, whether there is an automorphism
of H sending the first list to the second up to conjugation, so that the conjugators
in every block are the same.

For every i = 1, . . . , n, we compute the constant Ci (depending only on δ, �S

and
∑mi

j=1 |vi,j |) given in Theorem 1.2. By this theorem, for every α ∈ Aut(H) and
every i = 1, . . . , n, the following statements are equivalent:

(1) the elements vi,j and α(ui,j), j = 1, . . . , mi, are conjugated by the same
conjugator;

(2) the elements W (vi,1, . . . , vi,mi) and W (α(ui,1), . . . , α(ui,mi)) are conjugated for
every word W in mi variables and length up to Ci.

Now, let us enlarge each block of u’s and v’s with all the elements of the form
W (ui,1, . . . , ui,mi) and W (vi,1, . . . , vi,mi), respectively, where W runs over the set
of all words in mi variables and length less than or equal to Ci. Our problem is now
equivalent to deciding whether there exists an automorphism α ∈ Aut(H) send-
ing W (ui,1, . . . , ui,mi) to a conjugate of W (vi,1, . . . , vi,mi) for every i and for every
W of length less than or equal to Ci. This is decidable by Dahmani–Guirardel’s
recent solution to the first Whitehead problem for hyperbolic groups (see
[5, Corollary 5]).
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