Gruppentheorie

Übungsblatt 1

Aufgabe 1.

- a) Beweisen Sie, dass \mathbb{Z}_3 die Präsentation $\langle x | x^3 \rangle$ hat.
- b) Beweisen Sie, dass $\mathbb{Z} \oplus \mathbb{Z}$ die Präsentation $\langle a, b \mid a^{-1}b^{-1}ab \rangle$ hat.

Aufgabe 2.

- a) Wie viele reduzierte Elemente der Länge 2 gibt es in der freien Gruppe F(a,b)?
- b) Wie viele reduzierte Elemente der Länge k gibt es in der freien Gruppe F(a,b)?
- c) Wie viele reduzierte Elemente der Länge k gibt es in der freien Gruppe des Ranges n?

Aufgabe 3.

- a) Sei $g = a^{-1}b^{-2}a^2b^3a \in F(a,b)$. Berechnen Sie die reduzierte Form von g^3 .
- b) Sei $1 \neq g \in F(a,b)$. Beweisen Sie, dass $|g^n| > |g|$ für alle $n \geqslant 1$ ist.

Hinweis zu b). Schreiben Sie g in der Form $g = uvu^{-1}$, wobei $u, v \in F(a, b)$ ist, das Wort uvu^{-1} reduziert ist und der erste und der letzte Buchstabe von v nicht zueinander invers sind. Dann berechnen Sie die reduzierte Form von $|g^n|$.

Aufgabe 4. Seien u, v zwei Elemente einer freien Gruppe F, so dass $u^n = v^n$ für ein $n \ge 1$ gilt. Beweisen Sie, dass u = v gilt.

Aufgabe 5.

- a) Beweisen Sie, dass die Menge aller Elemente der geraden Länge in F(a, b) eine Untergruppe von F(a, b) bildet.
 - b) Beweisen Sie, dass diese Untergruppe den Index 2 in F(a,b) hat.
 - c) Beweisen Sie, dass diese Untergruppe gleich $\langle a^2, b^2, ab \rangle$ ist.