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Acylindric actions on metric spaces

Def. (Bowditch, Osin) An isometric action of a group G on a
metric space S is called acylindrical if for every ε > 0 there exist
R,N > 0 such that for every two points x , y ∈ S with d(x , y) > R
we have ∣∣{g ∈ G | d(x , gx) 6 ε and d(y , gy) 6 ε}

∣∣ 6 N.

x y

g(x) g(y)

≥ R(ε)

ε ≥ ≤ ε
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Acylindrically hyperbolic groups

Def. (Osin) A group G is called acylindrically hyperbolic if it
satisfies one of the following equivalent conditions:

(AH1) There exists a generating set X of G such that the
corresponding Cayley graph Γ(G ,X ) is hyperbolic,
|∂Γ(G ,X )| > 2, and the natural action of G on Γ(G ,X ) is
acylindrical.

(AH2) G admits a non-elementary acylindrical action on a hyperbolic
space.

In the case (AH1), we also say that G is acylindrically hyperbolic
with respect to X .



Examples of acylindrically hyperbolic groups

1. Every non-(virtually cyclic) relatively hyperbolic group with
proper peripheral subgroups.

2. MCG(Σg ,p) except g = 0, p 6 3.

3. Out(Fn), n > 2.

4. Noncyclic directly indecomposable RAAG’s.

5. For every compact orientable irreducible 3-manifold M, the
fundamental group π1(M) is either
· virtually polycyclic, or
· acylindrically hyperbolic, or
· M is Seifert fibert.

In the latter case π1(M) contains a normal subgroup N ∼= Z
such that π1(M)/N is acylindrically hyperbolic.



Two interesting theorems

Thm. (Osin) Groups of deficiency at least 2 are acylindrically
hyperbolic.

Thm. (Minasyan, Osin) Let G be a group acting minimally on a
simplicial tree. Suppose that G does not fix any point on ∂T and
there exist two vertices u, v ∈ T such that the pointwise stabilizer
of {u, v} is finite (i.e. |St(u) ∩ St(v)| <∞). Then G is either
virtually cyclic or acylindrically hyperbolic.

Cor. (Minasyan, Osin)
a) Let G = A ∗C B, where A 6= C 6= B and C is weakly malnormal,
i.e. there exists g ∈ G with |C g ∩ C | <∞. Then G is either
virtually cyclic or acylindrically hyperbolic.

b) Let G = 〈A, t | t−1Ct = D〉, where C 6= A 6= D and C is weakly
malnormal. Then G is either virtually cyclic or acylindrically
hyperbolic.
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Clean groups etc.

Most theorems will be given for clean groups.

Def.
• A group H is called clean if H does not have nontrivial finite
normal subgroups.

• A group G is finitely generated over a subgroup H if there exists
a finite subset A ⊂ G such that G = 〈A,H〉.



Equations with constants from a group H

Let X = {x1, x2, . . . } be a countably infinite set of variables, and
let H be a group. An equation with variables x1, . . . , xn and
constants from H is an arbitrary expression

f (x1, . . . , xn;H) = 1,

where the left side is a word in the alphabet {x1, . . . , xn}± ∪ H.

In other words f (x1, . . . , xn;H) lies in the free product F (X ) ∗ H,
where F (X ) is the free group with basis X .

For any overgroup G of H, the set of solutions of f in G is denoted
by

VG (f ).
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Equationally Noetherian groups

Def. A group H is called equationally Noetherian if every system of
equations with constants from H and a finite number of variables
is equivalent to a finite subsystem.



Examples of equationally noetherian groups
(1) All linear groups over a commutative noetherian unitary ring.

(over a field – Bryant; extended by Baumslag, Myasnikov and
Remeslennikov).

(2) Finitely generated abelian-by-nilpotent group (Bryant)
(3) Rigid solvable groups (Romanovskii and Gupta).

[A solvable group G is called rigid if it possesses a normal
series of the form G = G1 > G2 > · · · > Gm > Gm+1 = 1,
where the quotients Gi/Gi+1 are abelian and torsion-free as
right Z[G/Gi ]-modules. In particular, free solvable groups are
rigid.]

(4) If A and B are equationally noetherian groups, then their free
product A ∗ B is also equationally noetherian (Sela).

(5) Hyperbolic groups are equationally noetherian (torsion-free
case – Sela; extended by Reinfeldt and Weidmann).

(6) Suppose that G is a relatively hyperbolic group with respect
to a finite collection of subgroups {H1, . . . ,Hn}. Then G is
equationally noetherian if and only if each Hi is equationally
noetherian (Groves and Hull).



Systems of equations → a single equation

Thm A. (Bogo, 2018) Let H be a clean acylindrically hyperbolic
group and let

S :


s1(x1, . . . , xn;H) = 1,

. . .

sk(x1, . . . , xn;H) = 1,

be a finite system of equations with constants from H. Then there
exists a single equation f (x1, . . . , xn;H) = 1 with VH(S) = VH(f ).

Cor A1. (Bogo, 2018) Let H be a clean nonelementary hyperbolic
group and let S ⊂ Fn ∗ H be a (possibly infinite) system of
equations with constants from H. Then there exists a single
equation f ∈ Fn ∗ H such that VH(S) = VH(f ).
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Splitted equations

Def. An equation f ∈ Fn ∗ H is called splitted if it has the form
wh−1, where w ∈ Fn and h ∈ H. We can write this equation as

w(x1, . . . , xn) = h.



Finite systems of equations → a single splitted equation

Thm B. (Bogo, 2019) Let H be a clean acylindrically hyperbolic
group and let S ⊂ Fn ∗ H be a finite system of equations with
constants from H. Then

(1) There exist a natural k > n and a single splitted equation
f ∈ Fk ∗ H of the form f1f0, where f1 ∈ Fk and f0 ∈ H such
that the following two properties are satisfied:

(a)

prn
(
VH(f )

)
=
⋃
α∈Z

VH(S)f
α
0 .

(b) For any overgroup G of the group H we have

prn
(
VG (f )

)
⊇
⋃
α∈Z

VG (S)f
α
0 .

(2) There exist a natural k > n and two splitted equations
f , g ∈ Fk ∗ H such that

VH(S) = prn
(
VH(f )

)
∩ prn

(
VH(g)

)
.
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Algebraically and verbally closed subgroups. Retracts

Def. Let H be a subgroup of a group G .

(a) The subgroup H is called algebraically closed in G if for any
finite system of equations

S = {Wi (x1, . . . , xn;H) = 1 | i = 1, . . . ,m}

with constants from H the following holds:
If S has a solution in G , then it has a solution in H.

(b) The subgroup H is called verbally closed in G if for any word
W ∈ F (X ) and any element h ∈ H the following holds:
If the equation

W (x1, . . . , xn) = h

has a solution in G , then it has a solution in H.

(c) The subgroup H is called a retract of G if there is a
homomorphism ϕ : G → H such that ϕ|H = id.
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Algebraically closed / verbally closed

Let H 6 G . When the following statements are equivalent?
(1) H is algebraically closed in G .
(2) H is verbally closed in G .
(3) H is a retract of G .

retract alg. closed

always
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H is clean and acyl. hyp.

Bogopolski, 2018



Algebraically closed / verbally closed

Let H 6 G . When the following statements are equivalent?
(1) H is algebraically closed in G .
(2) H is verbally closed in G .
(3) H is a retract of G .

Thm C. (Bogo, 2018) If H is a clean acylindrically hyperbolic
group and G is an arbitrary overgroup of H, then (1)⇔ (2).

Cor C1. (Bogo, 2018) If H is a clean non-parabolic subgroup of a
relatively hyperbolic group G , then (1)⇔ (2).

Cor C2. (Bogo, 2018) If H is a clean subgroup of a hyperbolic
group G , then (1)⇔ (2)⇔ (3).

↑ solves Problem 5.2 from A.G. Myasnikov, V. Roman’kov,
Verbally closed subgroups of free groups,
J. of Group Theory, 17, no. 1 (2014), 29-40.
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Theorem C fails for non-clean acylindrically hyperbolic
groups

Example: Consider two copies of the dihedral group D4:

A = 〈a, b | a4 = 1, b2 = 1, b−1ab = a−1〉,

B = 〈c , d | c4 = 1, d2 = 1, d−1cd = c−1〉.

Let F be a nonabelian free group. We define

G = F × (A ×
a2=c2

B) = (F × A) ×
a2=c2

B,

H = F × A.

Clearly, H is hyperbolic and is not clean, and the following holds:

(a) H is verbally closed in G ;

(b) H is not a retract of G ;

(c) H is not algebraically closed in G .



Classification of elements in acylindrically hyperbolic
groups

Def. Let G be a group with a fixed generating set X and let g ∈ G .
g is elliptic if each (equiv. any) orbit of 〈g〉 in Γ(G ,X ) is bounded.
g is loxodromic if for some λ > 1, ε > 0

d(1, gn) >
1

λ
|n| − ε.

Thm. (Bowditch) Let G be an acylindrically hyperbolic group with
respect to a generating set X . Then any element g ∈ G acts either
elliptically or loxodromically on Γ(G ,X ).



About elliptic and loxodromic elements
in acylindrically hyperbolic groups

Claim. Let G be an acylindrically hyperbolic group with respect to
a generating set X . Let g ∈ G .

• If g is elliptic, then there exists u ∈ G such that

u−1〈g〉u ⊆ B1(4δ + 1).

• If g is loxodromic, then 〈g〉 is contained in a unique maximal
virtually cyclic subgroup. This subgroup, denoted by EG (g), is
called the elementary subgroup associated with g .
It can be described as

EG (g) = {f ∈ G | ∃n ∈ N : f −1gnf = g±n}

= {f ∈ G | ∃k ,m ∈ Z \ {0} : f −1gk f = gm}.



Some equations in acylindrically hyperbolic groups

Thm D. (Bogo, 2018) Let G be an acylindrically hyperbolic group
with respect to a generating set X . Suppose that a, b ∈ G are two
non-commensurable loxodromic elements (with respect to X ) such
that EG (a) = 〈a〉 and EG (b) = 〈b〉.

Then there exists a number ` = `(a, b) ∈ N such that for all
n,m ∈ `N, n 6= m, the equation

xnym = anbm

is perfect, i.e. any solution of this equation in G is conjugate to
(a, b) by a power of anbm.



Uniform divergence of quasi-geodesics determined by
loxodromic elements in acylindrically hyperbolic groups

Thm E1. (Bogo, 2018) Let G be an acylindrically hyperbolic group
with respect to a generating set X . Then there exists a constant
N0 > 0 such that for any loxodromic (with respect to X ) elements
c , d ∈ G with EG (c) 6= EG (d) and for any n,m ∈ N we have that

|cndm|X >
min{n,m}

N0
.



How the quasi-geodesics determined by loxodromic
elements avoid balls around the elliptic elements

Thm E2. (Bogo, 2018) Let G be an acylindrically hyperbolic group
with respect to a generating set X . Then there exists a constant
N1 > 0 such that for any loxodromic (with respect to X ) element
c ∈ G , for any elliptic element e ∈ G \ EG (c), and for any n ∈ N
we have that

|cne|X >
n

N1
.



Jump aside: What happens if two worlds meet

Thm I. (Bogo and Corson, 2019) Let G be an AH-group with
respect to a generating set X . Then for any homomorphism
ϕ : HEG→ G , there exists a natural number n such that

ϕ(HEGn) 6 Ell(G ,X ).

Thm J. (Bogo and Corson, 2019) Let H be a topological group
which is either completely metrizable or locally compact Hausdorff.
Let G be an AH-group with respect to a generating set X . Then
for any abstract group homomorphism ϕ : H → G there exists an
open neighborhood V of identity 1H such that

ϕ(V ) 6 Ell(G ,X ).



1001st proof that HEG is not free

• Each free group F admits a universal acylindrical action on a
hyperbolic space.

• HEG dies not admit such an action.



Periodicity theorem for free groups

Claim (Folklore; used by Adian)
Let a, b ∈ F (X ) be two cyclically reduced words. If the bi-infinite
words L(a) = . . . aaa . . . and L(b) = . . . bbb . . . have a common
subword of length at least 2 max{|a|, |b|}, then a and b are
commensurable.

L(a)

a

a a a a

a

L(b)

b

b b b b b b

b



A quasi-geodesic L(x , a) in the Cayley graph Γ(G ,X ),
where x ∈ G , a ∈ Lox(G ,X )

·

·

· ·

·

·

Γ(G,X)

L(x, a)



A quasi-geodesic L(x , a) in the Cayley graph Γ(G ,X ),
where x ∈ G , a ∈ Lox(G ,X )

·
·
· ·

·
·

Γ(G,X)

L(x, a)

x ax a2x
a−1x



Definition of the set SLox(G ,X )

Def. Given a group G and a generating set X of G , we denote by

SLox(G ,X )

the set of of all loxodromic elements of G with respect to X that
are shortest in their conjugacy classes.



A periodicity function F

For which groups G and generating sets X , there exists a function
F : R→ R such that for any a, b ∈ SLox(G ,X ), if we have the
situation as in the figure below, then a, b are commensurable?

r> F (r) periods

·

·

· ·

·

·

·

·

· ·

·

·

Γ(G,X)

L(x, a)

L(y, b)



First periodicity theorem for AH-groups

Thm F1. (Bogo, 2018) Suppose that G is an AH-group w.r.t. X .
Then there exists a function F : R→ R such that for any two
quasi-geodesics L(x , a) and L(y , b), where a, b ∈ SLox(G ,X ),

if some segments p ⊂ L(x , a) and q ⊂ L(y , b) both contain at least
F(r) periods, where r = dH(p, q), then a and b are commensurable.

r> F (r) periods

·

·

· ·

·

·

·

·

· ·

·

·

Γ(G,X)

L(x, a)

L(y, b)



Stable norms

Def. The stable norm of a loxodromic element g ∈ G with respect
to X is the real number defined as

||g ||X = lim
n→∞

|gn|X
n

.

Claim.

(1) |g |X > ||g ||X = inf
n∈N

|gn|X
n

.

(2) ||y−1gy ||X = ||g ||X for any y ∈ G .

(3) ||gk ||X = |k | · ||g ||X for any k ∈ Z.



Injectivity radius inj(G ,X )

Thm. (Bowditch) Let X be a generating set of a group G .
If the Cayley graph Γ(G ,X ) is hyperbolic and G acts acylindrically
on Γ(G ,X ), then each element of G is either elliptic or loxodromic
with respect to X and

inj(G ,X ) := inf
g∈Lox(G ,X )

||g || > 0.



First periodicity theorem for AH-groups

Thm F1. (Bogo, 2018) Suppose that G is an AH-group w.r.t. X .
Then there exists a function F : R→ R such that for any two
quasi-geodesics L(x , a) and L(y , b), where a, b ∈ SLox(G ,X ),

if some segments p ⊂ L(x , a) and q ⊂ L(y , b) both contain at least
F(r) periods, where r = dH(p, q), then a and b are commensurable.

r> F (r) periods

·

·

· ·

·

·

·

·

· ·

·

·

Γ(G,X)

L(x, a)

L(y, b)

F(r) =
2r

inj(G ,X )
+ C ,

where C = C (G ,X )
is a constant.



Second periodicity theorem for AH-groups

Thm F2. (Bogo, 2018) Suppose that G is an AH-group w.r.t. X ,
and let F : R→ R be the fuction as above. Then for any two
quasi-geodesics L(x , a) and L(y , b), where a, b ∈ SLox(G ,X ) and
|a|X > |b|X , and any r ∈ R
if some segment p ⊂ L(x , a) contains at least F(r) periods and lies
in the r -neighborhood of L(y , b), then a, b are commensurable.
Moreover, there exist s, t 6= 0 such that (x−1y)bs(y−1x) = at .

r

> F (r) periods

·

·

· ·

·

·

·

·

· ·

·

·

Γ(G,X)

L(x, a)

L(y, b)

F(r) =
2r

inj(G ,X )
+ C



Test elements (definition)

The following concept was studied by Nielsen, Zieschang, Rips,
Dold, Spilrain, Turner and otheres before it was defined explicitly
by O’Neill and Turner (2000).

Def. Given a group G , an element g ∈ G is called a test element
if any endomorphism ϕ : G → G for which ϕ(g) = g is an
automorphism of G .

Examples. The following elements are test elements:

• [x1, x2] in the free group F (x1, x2) (Nielsen).

• [x1, x2] · . . . · [xn−1, xn] in F (x1, . . . , xn) if n is even (Zieschang).

• xk1 xk2 . . . xkn (k > 2) in F (x1, . . . , xn) (Zieschang)



Test elements (definition)

The following concept was studied by Nielsen, Zieschang, Rips,
Dold, Spilrain, Turner and otheres before it was defined explicitly
by O’Neill and Turner (2000).

Def. Given a group G , an element g ∈ G is called a test element
if any endomorphism ϕ : G → G for which ϕ(g) = g is an
automorphism of G .

Examples. The following elements are test elements:

• [x1, x2] in the free group F (x1, x2) (Nielsen).

• [x1, x2] · . . . · [xn−1, xn] in F (x1, . . . , xn) if n is even (Zieschang).

• xk1 xk2 . . . xkn (k > 2) in F (x1, . . . , xn) (Zieschang)



Test elements and retracts

Def. Given a group G , an element g ∈ G is called a test element
if any endomorphism ϕ : G → G for which ϕ(g) = g is an
automorphism of G .

Obs. Test elements of G lie outside of proper retracts of G .

Thm. (Turner, 1996) An element g of a free group Fn is a test
element if and only if g is not contained in a proper retract of Fn.

Thm. (Groves, 2012) An element g of a torsion-free hyperbolic
group G is a test element if and only if g is not contained in a
proper retract of G .
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Test words (new definition)

Def. (Bogo, 2018) Let G be a group and let a1, . . . , ak be some
elements of G . A word W (x1, . . . , xk) from Fk is called an
(a1, . . . , ak)-test word if any solution of the equation

W (x1, . . . , xk) = W (a1, . . . , ak) (?)

in G is usual, i.e., any solution (b1, . . . , bk) has the form

(b1, . . . , bk) = (a1, . . . , ak)U ,

where U is a power of the element on the right side of (?).

Remark 1. If G = 〈a1, . . . , ak〉 and W (x1, . . . , xk) is as above, then
the element W (a1, . . . , ak) is a test element in the sense of Turner.
Moreover, any endomorphism of G fixing this element is a
conjugation.
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Why test words are good

Def. (Bogo, 2018) Let G be a group and let a1, . . . , ak be some
elements of G . A word W (x1, . . . , xk) from Fk is called an
(a1, . . . , ak)-test word if any solution of the equation

W (x1, . . . , xk) = W (a1, . . . , ak) (?)

in G is usual (see above).

Remark 2.
1) If G = 〈a1, . . . , ak〉, then any outer automorphism of G is
completely determined by its values on a single element
g = W (a1, . . . , ak), where W (x1, . . . , xk) is as above.

Compare (S. Ivanov): There exist two elements g1, g2 ∈ Fn such
that any monomorphism of Fn is completely determined by its
value on g1, g2.

2) Test words are used in the proof of main Theorems A and B.
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Existence of test words

Def. (Bogo, 2018) Let G be a group and let a1, . . . , ak be some
elements of G . A word W (x1, . . . , xk) from Fk is called an
(a1, . . . , ak)-test word if any solution of the equation

W (x1, . . . , xk) = W (a1, . . . , ak) (?)

in G is usual (see above).

Metha-Thm G. (Bogo, 2018)
If G is a clean AH-group, then for any generic finite set of
elements a1, . . . , ak in G there exists an (a1, . . . , ak)-test word.



Special elements in acylindrically hyperbolic group

Def. (Bogo, 2019)
Suppose that G is an acylindrically hyperbolic group.

(a) An element g ∈ G is called special if there exists a generating
set X of G such that
- G is acylindrically hyperbolic with respect to X ,
- g is loxodromic with respect to X , and
- EG (g) = 〈g〉.
In this case g is called special with respect to X .

(b) Elements g1, . . . , gk ∈ G are called jointly special if there
exists a generating set X of G such that each gi is special
with respect to X .

Example. Any set of root-free elements of Fn is jointly special.
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Existence of special elements

Rem. A non-clean AH-group does not contain special elements.

Lem. (Osin) Any clean AH-group contains a special element.

Lem. (Bogo, 2019) Let G be an clean AH-group. Then there are
two special elements a, g ∈ G such that for any k ∈ N the coset
a〈g〉 contains k non-commensurable and jointly special elements.
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Generation by jointly special and non-commensurable
elements

Prop H. (Bogo, 2018) Let G be an AH-group and H a finitely
generated subgroup of G . If H contains at least one special
element of G , then H can be generated by a finite set of elements,
which are pairwise non-commensurable and jointly special in G .

Cor H1. (Bogo, 2018) Any finitely generated clean AH-group G
can be generated by by a finite set of elements, which are pairwise
non-commensurable and jointly special in G .
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Existence of test words

Thm G1. (Bogo, 2018) Let G be an AH-group. Suppose that
a1, . . . , ak ∈ G , where k > 1, are jointly special and pairwise
non-commensurable. Then there exists an (a1, . . . , ak)-test word
Uk(x1, . . . , xk).

Moreover, one can choose Uk(x1, . . . , xk) so that the elements
a1, . . . , ak together with Uk(a1, . . . , ak) are jointly special and
pairwise non-commensurable.



Existence of test words

Thm G2. (Bogo, 2018) Let G be an AH-group. Suppose that
a1, . . . , ak ∈ G , where k > 3, are jointly special and pairwise
non-commensurable. Then there exists an (a1, . . . , ak , 1

k−2)-test
word Wk(x1, . . . , xk , y3, . . . , yk).

Moreover, one can choose this test word so that the elements
a1, . . . , ak together with Wk(a1, . . . , ak , 1

k−2) are jointly special
and pairwise non-commensurable.



Proof of Theorem G1

Thm G1. (Bogo, 2018) Let G be an AH-group. Suppose that
a1, . . . , ak ∈ G , where k > 1, are jointly special and pairwise
non-commensurable. Then there exists an (a1, . . . , ak)-test word
Uk(x1, . . . , xk).

Proof.
k = 1. Take U1 = x1.

k = 2. Take U2 = xn1 x
m
2 with n,m from Theorem D.
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Equation xnym = anbm in AH-groups

Thm D. (Bogo, 2018) Let G be an AH-group. Suppose that
a, b ∈ G are two non-commensurable jointly special elements.
Then there exists a number ` = `(a, b) ∈ N such that for all
n,m ∈ `N, n 6= m, any solution of the equation

xnym = anbm

in G is conjugate to (a, b) by a power of anbm.
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Proof.
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k = 2. Take U2 = xn1 x
m
2 with n,m from Theorem D.

k = 3. Do not take U3 = (xn1 x
m
2 )sx t3. Entangle:

U3 =
((

xk1 x
l
2

)p (
xn2 x

m
3

)q)u (
x s2x

t
3

)v
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Proof of Theorem G2

Thm G2. (Bogo, 2018) Let G be an AH-group. Suppose that
a1, . . . , ak ∈ G , where k > 3, are jointly special and pairwise
non-commensurable. Then there exists an (a1, . . . , ak , 1

k−2)-test
word Wk(x1, . . . , xk , y3, . . . , yk).

Proof. The proof is more tricky.
For k = 3 the (a1, a2, a3, 1)-test word has the form((

xk1 x
l
2

)p (
xn2 x

m
3

)q)u (
x s2(x3x4)t

)v
with exponents depending on ai ’s.



Systems of equations → a single equation

Thm A. (Bogo, 2018) Let H be a clean acylindrically hyperbolic
group and let

S :


s1(x1, . . . , xn;H) = 1,

. . .

sk(x1, . . . , xn;H) = 1

be a finite system of equations with constants from H. Then there
exists a single equation f (x1, . . . , xn;H) = 1 with VH(S) = VH(f ).

Proof. 1) Take jointly special and non-commen. a1, . . . , ak+2 ∈ H.

2) Let W (z1, . . . , z2k+2) be an (a1, . . . , ak+2, 1, . . . , 1︸ ︷︷ ︸
k

)-test word.

3) The desired single equation is

W (a1, . . . , ak+2, 1, . . . , 1︸ ︷︷ ︸
k

) = W (a1, . . . , ak+2, s1, . . . , sk).
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Finite systems of equations → a single splitted equation

Thm B. (Bogo, 2019) Let H be a clean acylindrically hyperbolic
group and let S ⊂ Fn ∗ H be a finite system of equations with
constants from H. Then there exist a natural k > n and a single
splitted equation f ∈ Fk ∗ H of the form f1f0, where f1 ∈ Fk and
f0 ∈ H such that the following holds:

(a) prn
(
VH(f )

)
=
⋃
α∈Z

VH(S)f
α
0 .

(b) For any overgroup G of the group H we have

prn
(
VG (f )

)
⊇
⋃
α∈Z

VG (S)f
α
0 .



Algebraic closedness / verbal closedness

Thm C. (Bogo, 2018) If H is a clean acylindrically hyperbolic
group and G is an arbitrary overgroup of H, then the following
properties are equivalent:

(1) H is algebraically closed in G .
(2) H is verbally closed in G .

Proof. (2)⇒ (1). We shall prove the implication

VG (S) 6= ∅ ⇒ VH(S) 6= ∅.

Let f be a single splitted equation as in Theorem B.

VG (S) 6= ∅ (b)⇒ VG (f ) 6= ∅ (2)⇒ VH(f ) 6= ∅ (a)⇒ VH(S) 6= ∅.
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Existential closedness

Def. A subgroup H of a group G is called existentially closed in G
if for any finite system S of equations and inequalities

ui (x1, . . . , xk ;H) = 1 (i = 1, . . . , n),

vj(x1, . . . , xk ;H) 6= 1 (j = 1, . . . ,m)

with coefficients in H the following holds: if S has a solution in G ,
then it has a solution in H.



Discrimination and separation

The following definition is due to

G. Baumslag, A. Myasnikov, and V. Remeslennikov, Algebraic
geometry over groups I. Algebraic sets and ideal theory, J. Algebra,
1999.

Def. (BMR)

1) If H is a subgroup of G , the expression H 6 G is called an
extension of H to G .

2) An extension H 6 G is called discriminating if for any finite
subset K ⊆ G there exists a retraction ϕ : G → H that is
injective on K .

3) An extension H 6 G is called separating if for any nontrivial
element g ∈ G there exists a retraction ϕ : G → H such that
ϕ(g) 6= 1.
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Existential closedness/ discrimination / separation

Let H 6 G . When the following statements are equivalent?
(1) H is existentially closed in G .
(2) H 6 G is discriminating.
(3) H 6 G is separating.

exist. closed discriminat.

always
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H is clean and acyl. hyp.

Bogopolski, 2019



Discrimination and separation

Thm H. (Bogo, 2019) Suppose that H is a clean AH-group and G
is an overgroup of H. Then the extension H 6 G is discriminating
if and only it is separating.



Existential closedness for subgroups of relatively hyperbolic
groups

Cor H1. (Bogo, 2019) Let G be a clean relatively hyperbolic group
with respect to a finite collection of proper finitely generated
equationally noetherian subgroups. Then for any subgroup H of G
the following statements are equivalent.

(1) H is existentially closed in G .

(2) The extension H 6 G is discriminating.

(3) The extension H 6 G is separating.

In particular, these statements are equivalent for any subgroup H
of a clean hyperbolic group G .



S-closedness (preparatory notations)

• Let A be some class of algebraic structures with the same
signature Sign. For example, A is a class of all hyperbolic groups
with the signature Sign = {·, −1, 1}.

• Let Lang be the language consisting of
- the elements of Sign,
- the logical symbols =, ¬,

∧
,
∨

, ∃, ∀,
- the variables x1, x2, . . . , and the punctuation signs.

Def. Suppose that φ is a first-order formula in the language Lang .
A variable x in φ is called free in φ if neither ∀x nor ∃x occur in φ.

We denote φ by φ(x1, . . . , xn) if and only if x1, . . . , xn are all free
variables of φ.
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S-closedness (definition)

Def (B.H. Neumann)
- Let A be a class of structures with the same signature Sign.
- Let A be a structure from the class A.
- Let S be a set of formulas in the language Lang .

The structure A is called S-closed in A if for any formula
φ(x1, . . . , xn) ∈ S, any elements a1, . . . , an ∈ A, and any structure
B ∈ A containing A if φ(a1, . . . , an) holds

B |= φ(a1, . . . , an)⇒ A |= φ(a1, . . . , an).

In the case, where H is a substructure of a structure G and H is
S-closed in the class {H,G}, we simplify notation by saying that
H is S-closed in G .



Some subsets of the set of all formulas

• Φ is the set of all formulas in the language associated with the
signature of groups.

• Φ0 is the subset of Φ consisting of all formulas without free
variables (such formulas are called sentences).

• ∃∃ is the subset of Φ consisting of all existential formulas, i.e., of
the formulas which have the form
∃ x1 . . . ∃ xn φ(x1, . . . , xn, xn+1, . . . , xk), where φ ∈ Φ is a quantifier
free formula.

• ∃∃+ is the subset of Φ consisting of all positive existential
formulas, i.e., of the existential formulas without the negation
symbol.

• V = ∪
n∈N
{∃ x1 . . . ∃ xn : w(x1, . . . , xn) = xn+1 |w ∈ Fn}.



Vocabulary

Let H 6 G .

elementary embedded Φ-closed ⇒ Th(H) = Th(G )
existentially closed ∃∃-closed ⇒ Th∃(H) = Th∃(G )
algebraically closed ∃∃+-closed
verbally closed V-closed

Thm. (Sela; Kharlampovich and Myasnikov) For n > k > 2, the
subgroup F (x1, . . . , xk) is elementarily embedded in F (x1, . . . , xn).

Thm. (Perin, Sela) Let H be a subgroup of a torsion-free
hyperbolic group G . H is elementarily embedded in G if and only
if G admits the structure of a hyperbolic tower over H
(in particular, H is a retract of G ).
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Comparatione

Let H be a subgroup of a torsion-free hyperbolic group G . Then

H is verbally H is existentially H is elementary
closed in G closed in G embedded in G

m m m
H is a retract of G For any nontrivial g ∈ G G is a hyperbolic

there exists a retraction tower over H
ϕ : G → H with ϕ(g) 6= 1



Problems for future

1. Describe solutions of equations with high exponents in the
class of acylindrically hyperbolic groups.

2. Characterise elementary embedding in the class of
acylindrically hyperbolic groups.



THANK YOU!
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