Wichtige Schritte zum Verständnis von Lie-Algebras¹

1. Sei G eine geschlossene lineare Untergruppe von $GL_n(\mathbb{C})$ und sei \mathfrak{g} ihre tangente Lie-Algebra. Dann ist $\exp(\mathfrak{g}) \subseteq G$. Außerdem erzeugt $\exp(\mathfrak{g})$ eine zusammengehängte Komponente von \mathfrak{g} , die das neutrale Element von \mathfrak{g} enthält.

Weiterhin ist K ein algebraisch abgeschlossener Körper der Charakteristik 0.

2. Satz (Lie). Seien

 \mathfrak{g} eine endlichdimensionale auflösbare Lie-Algebra über K, V ein endlichdimensionaler Vektorraum über K und $\varphi:\mathfrak{g}\to \operatorname{End}(V)$ eine Darstellung.

Dann existiert eine Basis \mathcal{B} von V, so dass gilt

$$[\varphi(g)]_{\mathcal{B}} = \begin{pmatrix} * & * & \dots & * & * \\ 0 & * & & & * \\ \vdots & & \ddots & \vdots \\ \vdots & & & * & * \\ 0 & \dots & \dots & 0 & * \end{pmatrix}.$$

- 3. Satz (Engel). Sei V ein endlichdimensionaler Vektorraum über K und sei \mathfrak{g} eine Lie-Unteralgebra von $\operatorname{End}(V)$, so dass jedes Element von \mathfrak{g} nilpotent ist. Dann gelten:
 - (1) ${\mathfrak g}$ ist eine nilpotente Lie-Algebra.
 - (2) Es existiert $v \in V \setminus \{0\}$, so dass X(v) = 0 für alle $X \in \mathfrak{g}$ ist.
 - (3) Es existiert eine Basis \mathcal{B} von V, so dass gilt

$$[\varphi(g)]_{\mathcal{B}} = \begin{pmatrix} 0 & * & \dots & * & * \\ 0 & 0 & & & * \\ \vdots & & \ddots & & \vdots \\ \vdots & & & 0 & * \\ 0 & \dots & \dots & 0 & 0 \end{pmatrix}.$$

4. Die Lie-Algebra

$$\mathfrak{sl}_2(\mathbb{C}) = \{ M \in M(2, \mathbb{C}) \mid \operatorname{Spur}(M) = 0 \}$$

hat eine Basis

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Es gelten die Formeln:

$$[h, e] = 2e,$$

 $[h, f] = -2f,$
 $[e, f] = h.$

¹Die Beweise kann man in dem Buch [Antony W. Knapp "Lie Groups beyond an introduction", Second ed. Progress in Math., v. 40, Birkhäuser, Boston-Basel-Berlin] finden.

4.1. Satz (irreduzible Darstellungen von $\mathfrak{sl}_2(\mathbb{C})$).

Für alle natürlichen $m \ge 1$ existiert eine einzige (bis zu einer Äquivalenz) irreduzible komplexe Darstellung $\varphi : \mathfrak{sl}_2(\mathbb{C}) \to \operatorname{End}(V)$, so dass dim V = m ist. Außerdem hat V eine Basis $\{v_0, v_1, \ldots, v_{m-1}\}$, so dass (weiter n = m - 1) gelten:

- $(1) \varphi(h)(v_i) = (n-2i)v_i,$
- (2) $\varphi(e)v_0 = 0$,
- (3) $\varphi(f) = v_{i+1}$, wobei $v_{n+1} = 0$ ist,
- (4) $\varphi(e)v_i = i(n-i+1)v_{i-1}$, wobei $v_{-1} = 0$ ist.
- 5. Klassifikation der halbeinfachen Lie-Algebren. Sei \mathfrak{g} eine Lie-Algebra und sei η eine Lie-Unteralgebra von \mathfrak{g} . Sei η^* ein dualer Vektorraum (der alle linearen Funktionale $\eta \to K$ enthält). Für $\alpha \in \eta^*$ bezeichnen wir

$$\mathfrak{g}_{\alpha} = \{X \in \mathfrak{g} \mid (\operatorname{ad} H - \alpha(H) \cdot \operatorname{id})^n X = 0 \text{ für alle } H \in \eta, \text{ wobei } n = n(H, X) \text{ ist} \}.$$

Dann ist \mathfrak{g}_{α} eine Lie-Unteralgebra von \mathfrak{g} . Bezeichnen wir

$$\Delta = \{ \alpha \in \eta^* \, | \, \mathfrak{g}_\alpha \neq 0 \}.$$

5.1. Satz (Zerlegung von $\mathfrak g$ bezüglich einer nilpotenten Unteralgebra). Sei $\mathfrak g$ eine endlichdimensionale Lie-Algebra über K und sei η eine nilpotente Lie-Unteralgebra von $\mathfrak g$.

Dann gelten:

- $(1) \mathfrak{g} = \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha},$
- $(2) \eta \subseteq \mathfrak{g}_0,$
- $(3) \ [\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] \subseteq \mathfrak{g}_{\alpha+\beta}.$

Definition. Eine Cartansche Unteralgebra von \mathfrak{g} ist eine nilpotente Unteralgebra η von η , so dass $\eta = \mathfrak{g}_0$ ist.

Definition. Der Normalisator von η ist

$$N_{\mathfrak{g}}(\eta) = \{X \in \mathfrak{g} \mid [X, \eta] \subseteq \eta\}.$$

Es ist klar, dass $\eta \subseteq N_{\mathfrak{g}}(\eta)$ ist.

- **5.2.** Satz. Sei \mathfrak{g} eine endlichdimensionale Lie-Algebra über K. Eine nilpotente Unteralgebra η von \mathfrak{g} ist eine Cartansche Unteralgebra nur dann, wenn $\eta = N_{\mathfrak{g}}(\eta)$ ist.
- ${f 5.3.}$ Satz. In jeder endlichdimensionalen Lie-Algebra über K existiert eine einzige (bis zu einem Automorphismus) Cartansche Unteralgebra.
- **5.4.** Satz. Sei \mathfrak{g} eine halbeinfache endlichdimensionale Lie-Algebra über K und sei η eine Cartansche Unteralgebra von \mathfrak{g} . Dann ist η abelsch und dim $\mathfrak{g}_{\alpha}=1$ ist für alle $\alpha \in \Delta \setminus \{0\}$.

Eine weitere Theorie beschreibt alle möglichen Δ mit Hilfe eines Skalarproduktes (das wird aus der Killing-Form konstruiert) und klassifiziert schließlich alle halbeinfachen endlichdimensionalen Lie-Algebras über \mathbb{C} . Das wird im WS07/08 skizziert. Danach kommen wir näher zu den Lieschen Gruppen.