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CLASSIFYING THE ACTIONS
OF FINITE GROUPS
ON ORIENTABLE SURFACES OF GENUS 4

O. V. Bogopol’skii *

Abstract

We work out a classification of all effective orientation-preserving finite group
actions, up to topological equivalence, on an orientable closed surface of genus 4.

Key words end phrases: orientable closed surface, orientation-preserving finite
group actions.

Classification of finite groups of homeomorphisms of surfaces is a classical
problem which has been attracting a considerable interest of mathematicians
since the last century and which still remains unsolved. It is of great impor-
tance for the module problem and for studying of the structure of mapping
class groups. An extensive literature devoted to this question is cited in [2, 13].

Let T, be an orientable closed surface of genus o. The symbol Homeom(7)
stands for the group of all homeomorphisms of the surface, Isot(7}) is the sub-
group consisting of homeomorphisms isotopic to identity, and

M, = Homeom(Ty)/Isot(T5)

is the mapping class group of T,. The group M, is isomorphic to the group
Out 71(7y) of outer automorphisms of the fundamental group of the sur-
face T, [10].

If we confine exposition to orientation-preserving homeomorphisms then
we can define the subgroups Homeom™(7;,) and M, of index 2 in the groups
Homeom(T,) and M,, respectively. For ¢ > 2, there exists a one-to-one
correspondence between the conjugacy classes of finite subgroups in the groups
Homeom™(7,,) and M} (see [2: p.233]).
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Finite subgroups in M for o = 2,3,4,5 are classified up to isomorphism
in [12, 8, 7, 6], respectively. In the last two articles the technique of actions
on the space of holomorphic differentials is used. However, it was noted in [2:
p.237] that this technique does not allow us to classify orientation-preserving
actions of finite groups on T, up to topological equivalence.

In the present article, we classify all effective orientation-preserving ac-
tions of finite groups, up to topological equivalence, on the surface Ty. This
classification together with the Reidemeister-Schreier method makes it possi-
ble to easily enumerate representatives of the conjugacy classes of finite sub-
groups in Mj" ;

We use the technique of [2] where similar results were obtained for the sur-
faces Ty and Tj.

In Section 1, we describe our approach to the study of finite group actions
on surfaces, state the main theorem, and correct an error of [2]. In Section 2
auxiliary results are presented and Section 3 is devoted to the proof of the main
theorem.

1. Algebraic approach to the study of G-actions.
The main theorem

In what follows, we use the notation [z,y] = 27y lzy and z¥ = y~1zy,
where z and y are elements of a group. Let T, be an orientable closed sur-
face of genus ¢ > 2 and let Homeom™(7}) be the group of its orientation-
preserving homeomorphisms. Given a finite group G, by a G-action we mean
a monomorphism €: G — Homeom“"(T,,). Two G-actions € and &' are said
to be topologically equivalent if there exist an automorphism o € Aut(G) and
a homeomorphism & € Homeom™(7}) such that £'(g) = h=1e(a(g))h for ev-
ery g € G.

Let H = {z € C | Imz > 0} be the hyperbolic plane. A discontinuous
group of orientation-preserving motions of this plane is called a Fuchsian group.
Assume given a Fuchsian group S isomorphic to the fundamental group (7).
Then the space of orbits, H/S, is homeomorphic to T. Identify it with T},.
Let M be the normalizer of S in the group Homeom™ (H). Each homeomor-
phism of the plane H in M induces a homeomorphism of the surface T}, which
belongs to Homeom™ (7). The corresponding map f: M — Homeom™(T,) is
an epimorphism with kernel S.

Let e: G — Homeom™ (7)) be some G-action. In view of [13: Section 7.3],
a genetic code of the group f~(¢(@)) is of the form

4 T
&= <a11ﬁ1)"°>amﬂp) Miy-ooyUr H[ai,ﬁi] H7J = 11
1=1 a=1

'rf”="'='¥5"’=1>- (1)



Classifying the Actions of Finite Groups 11

The numbers p, my, ..., m, are uniquely determined if we assume 2 < my < ---
< my. This follows, for example, from the proof of Lemma 4.7.4 in [13]. We say
that (p : m1,...,m,) are the branching data for the G-action e. Equivalent
G-actions have equal branching data. On the other hand, as we show below,
nonequivalent G-actions can have equal branching data too.

Recall the following fundamental facts.

1. The branching data (p : my,...,m;) are connected with ¢ and |G| by
the Riemann—-Hurwitz formula

(20—2)/|G|=2p—2+2(1—l). (2)

. m;
j=1 .

From here we can easily derive the following Hurwitz theorem: |G| < 84(o —1)
for ¢ > 2; given ¢ > 2 and |G|, there exists at most finitely many sets
(p : mi,...,m,) satisfying (2). Throughout the sequel, we consider integer-
valued sets for which p > 0and 2 < m; <--- < m,.

2. For a G-action with the branching data (p : m1,...,m;), there exists
an epimorphism 7: G* — G, where G* is defined by (1), whose kernel is
torsion-free (it is isomorphic to (Ta)).

Let z;, yi, and zj be the images of a;, fi, and 7; under the action of
the epimorphism 7: G* — G. It is known that |y;| = m; and, since Keryp is
torsion-free, |zj| = m;. Hence, the group G is generated by the elements z;,
yi, and zj (1 <@ < p, 1 <j <) such that

p r
[lzewil [[2 =1, (3)
j=1

=1

23] =my - g =L o) (4)

In particular, we have
my | |G| (3 = Lise557) (5)
Definition 1. An ordered set (z1,...,Zp,Y1,---,Yp;21,.--,2r) of ele-

ments in G is called a generating (p : m1,...,my)-vector if G is generated by
these elements and, in addition, formulas (3) and (4) hold.

Below we define an equivalence relation on the set of generating
(p: m1,...,ms)-vectors of G.

Let G* be a free group with free generators a1, ...,ap,b1,...,bp, C1,...,Cr.

There is a natural epimorphism G* — G* transforming a;, b; (1 < i < p),
and ¢; (1 < j < r) into @i, Bi, and 7;, respectively. Denote the word
1%, [ai, b H;=1 ¢j by w. In accord with [13: Theorem 5.8.2], each auto-

morphism « € Aut(G*) is induced by an automorphism @ € Aut(é;) such
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that @(w) is conjugate to w® in G* and &(c;) is conjugate to erj(j) 1<ji<r).
Here §,¢; € {—1,1} and = is a permutation on the symbols 1,...,r such that
‘711'(1')' = |4] for 1 £ j < r. In this case, § is independent of the choice of @.

Let Autt(G*) consist of automorphisms & € Aut(G*) such that § = 1.
Then Autt(G*) is a subgroup of index 2 in Aut(G*). Define an action of
Autt(G*) x Aut(G) on the set of generating (p : my,...,m)-vectors of G.

Let (o, 8) € Autt(G*) x Aut(G) and let u = (21,...,%p, 915+, Yp;
z1,...,2) be a generating (p : mi,...,m;)-vector for G. Put u(e, B) = o'
whenever the vector u' is obtained from the vector (ai,...,¢p,B1,-.-,0Bp;
1,---,7) by applying the map anf to each of its entries, where 7: G* -G
is an epimorphism transforming e, B, and v; (i =1,...,p5 7 =1,... ,7) into
i, ¥i, and z;, respectively.

Generating (p : mi,...,m,)-vectors v and v’ of G are referred to be
equivalent if v(e, B) = v' for some pair (e, B) € Autt(G*) x Aut(G).

Proposition 1 (see [2,5,9]). Let formula (2) hold for o, |G|, and
(p : mi,...,ms). Then there exists a bijection between the set of equiva-

!

lence classes of G-actions on Ty with the branching data (p : m1,...,m;) and
the set of equivalence classes of generating (p : mi, ..., m;)-vectors of G.
Before stating the main theorem, we make the following remarks.
Remark 1. If numbers ni,...,ns occur in the branching data with
multiplicities k1, ..., ks then we write (p : nfl, et ,ni‘) rather than
(p : nl,...,nl,...,n,,,..,n,).
By ks

In what follows we omit p in the branching data if p = 0.

Remark 2. Below we use the following genetic codes:

(z | 2™ = 1) for the cyclic group Zn,

(z,y | 2" = y™ = [e,y] = 1) for the group Zy X Zm,
(z,y|a?=1,y"=1, 27 lyz = y~1) for the dihedral group Dp.
The symbol Dy, , x denotes the group with genetic code

(z,y|z"=1, 3" =1, z lyz = yk>.

Remark 3. A quasidihedral group of order 2" is a group isomorphic to
Dg'gn—ilgn—z_l (n' 2— 4)

Throughout the sequel, Qs = {£1, +i,=j, £k} is the quaternion group of
order 8; Sp and A, are the symmetric and alternating groups on n symbols;
GLn(q) and SL,(q) are the general and special linear groups of matrices of
order n X n over a field of ¢ elements.
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Theorem. A finite group admits an effective orientation-preserving ac-
tion on an orientable closed surface of genus 4 if and only if it is imbeddable
into one of the following nine groups:

Z1s, Zis, SLa(3), S3xZg, SixZs, Ss,
a quasidihedral group of order 32, Zs X\ Dy, (Z3 % Z3) X Dy,

where the dihedral group D4 of order 8 acts on Z3 x Z3 without kernel and
on Zs with a noncyclic kernel of order 4.

The equivalence classes of G-actions, where G is a nonidentity finite group,
are in one-to-one correspondence with the triples (G, the branching data,
the generating vector) listed in Tables 1 and 2.

The scheme of the proof is as follows. First, we enumerate the sets
(1G], (p : mi,...,my)) that satisfy (5) and (2) for o = 4 and are such that
all the numbers m; occur in the list (9). Next, for such a set, we find groups
of order |G| with generating (p : m1,...,m,)-vectors and find representatives
of equivalence classes of these vectors. For abelian and dihedral groups, in
case p = 0, the representatives are listed in Table 1 without any explanations,
since they are easily obtained either directly or with the help of Subsections 2.3
and 2.4. The remaining cases are examined in Section 3.

Tables 1 and 2 are composed with regard to the above remarks. The ele-
ments A, B,C € GLy(3) = Aut(Z3 x Z3) are specified in the following lemma.

Lemma 1. The group G'L2(3) contains exactly two conjugacy classes of

. : . . -1 0 -1 0 &
involutions with representatives A = ( 0 _1) and B = ( g 1), one conju-

0
jugacy class of subgroups isomorphic to Zg x Zy with a representative (A, B),
and one conjugacy class of subgroups isomorphic to D4 with a representative

(C, B).

Remark. In the tables below, A, B, and C are the automorphisms of
the group Zj3 x Zj3 given by the following equalities:

gacy class of elements of order 4 with a representative C = ((1] ), one con-

Alz)=27", Aly)=y7Y
B(z)=z"", B(y)=y;
Clz)=y~", Cly) ==
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Table 2
Groups P leons®
QB (2’43) ( 153:33
As = (z,y | ¢ = (12)(34), y = (123))] (2,3%) |(=,9,9,9 ")
(1:2) (-'ﬂ v [z.y]” ")
(z,y |8 =1, @ =y, s lyz=y7")| (4%,8) |(z,27'y7"y)
(Zs3 x Z3) ™ (B) (3,62) (zy,yB zyB)
(z,yB,zy~'B)
(22,3%) | (B, Bz, y™1, zy)
(B, Bz,zy™",zy)
(Z3 x Z3) N (A) (22,3?%) | (A, Ay~ 'z, z,y)
Dys,—1 (4215) (m,m_ly_],y)
Dys,2 (4%,5) |(z,z7'y~L,y)
Si (2%,4) |((12),(13),(14),(4321))
Qs (y |9 =1) = SLy(3) (3,4,6) |(y,—1, zy )
D2'12'_5 (2,6, 12) (.T Ty~ ,y)
D3 6,7 (2,4,16) | (z,zy~",y)
(Z3 x Z3) N (A, B) (2%,3) |(A,BAy,Bz,z7 1y 1)
(2,6%) |(Azy~!, By, BAz)
Sy x (u]|u®=1) (2,6%) | (( 12 (123 ,(13)u™t)
(Z3 x Z3) ™ (C) (3,4) | (v, c)
Agx (x| z® =1) , (3%,6) | (( 123 (143 —1,(12)(34)z)
(:c,y,z ] 27 = y4 == L, y* = y‘_l:
o =z, oY =z71) = Zs X D4 | (2,4,10) (z2y,y,y%zz" ")
As (2,52) |((24)(35),(12345), (13452))
Sy x (z]|23=1) (2,3,12) | ((14), (123)z, (1324)z~")
(Z3 x Z3) ™ (B, C) (2,4,6) | (Bz,C,BCx)
Ss (2,4,5) | ((12),(2543), (12345))
Finally, we mention an error in [2: see p.263-264 and Table 5]. It is

asserted there that there exist two nonequivalent actions of the group

Gz(x,y,z|m2=y2=z“= ly,2] =

[2,2] = 1, ays™

1 yz2> = (ZaXZa)NZo

on the surface T3 with branching data (2%,4). The former is defined by the gen-

erating vector (z,z2y,y,

z71) and the latter by the vector (z,z2y, 22

,¥2) (in

Table 5 the last vector was written incorrectly). In fact, the last vector is not

generating since the group (z,zzy,2

2y2) =

(z,yz) has the normal subgroup

(yz) of index 2 and order 4 and, thus, is not equal to G.
It may be proven that a G-action on T3 with branching data (23,4) is

unique up to topological equivalence.
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2. Auxiliary results

2.1. The groups Aut™(G*) for p = 0,1. By convention, we write out
an automorphism action on a generator if and only if this generator is not
fixed.

Proposition 2 (see [1,2]). Let G* and G* be the above-introduced
groups, where p is equal to 0 or 1. For p = 0, we consider the following

automorphisms of the group Aut(G¥):
0;:c; = cj41, Cj41 — Cj__il_]CjCj.'_] (1<j<r-—1).
For p = 1 we additionally consider the automorphisms

w:a; — bhay, P: by — a1by,
= =1 =1 1]
alaalcrl-u-cj_l_lcj_l---cl by,
Ky ¢

c,'~+tc_,-t'1, where tZCj.].]"'C,-blC]'"Cj_l, ) "

bi — b —1,.. —'lc-l__‘c—l JG{,...,T}.
vt { 1 1016 Ci+1%—1 1>
J

c; — tht_l, where 1 = c¢j4y - -c,-al_lcl w ol Ty

The finite product p of the above automorphisms, their inverses, and inner
automorphisms induces an automorphism belonging to the group Aut™(G*)
if and only if the images of P(c;) and ¢; in G* are of the same order (1 <
3 <r). For p =0, every automorphism p € Aut*(G*) is induced by such
an automorphism P € Aut(é:).

2.2. The Singerman method of intermediate actions. The following propo-
sition is immediate from [11].

Proposition 3. Let ¢: G — Homeom™ (T,) be an action with branching
data (p : mi,...,m,) and let (21,...,Zp, Y1,---,Yp; 21,-..,2r) be the cor-
responding generating (p : ma,...,m,)-vector for G. Assume that H < G
and the branching data for the action &| g H - Homeom™ (T,) are (7 :

n1,...,n¢). Consider the action of the group G on the set of the right cosets
of G/H by the right multiplication. Let an element z; have k; orbits of length
mi/li1,...,mi/lit,. Then the set (n1,...,n¢) is obtained by deleting unities in
(i1y. -y likys ooy br1y- ooy Ik, ) and T is determined by the equality

T i

1 1

|G'H](2:0"'2+E (l—m—j))=(27—2+g (1—?1—‘9')).
J:l s=1

It often suffices to know that

every ng is a divisor of some m;. 6
j
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Proposition 4. Let the conditions of Proposition 3 be satisfied for 7 = 0
(in this case, p = 0). Then the subgroup H is normal in G if and only if, for
eachi = 1,...,r, the lengths of all orbits under the action (z;) on G/H by
the right multiplication coincide.

It was noted in [2] that this proposition follows readily from [3].

We will use Proposition 4 in the situation in which the branching data
for the G-action € and possible branching data for H-actions are known, but
the generating vectors are unknown.

Example. Describe the classes of actions for groups of order 24 on T4
with branching data (3,4, 6).

Assume that |G| = 24, e+ G — Homeom™ (T}) is an action with branching
data (3,4,6), and (z1,2,z3) is a generating (3, 4, 6)-vector for G correspond-
ing to €.

In view of formulas (2) and (5), applied to an arbitrary group H of order 8,
actions of H on Ty may have the following branching data: (1 : 4), (2%,4),
(2,4), and (22,8?). Let H be a Sylow 2-subgroup in G and let G/ H be the set
of right cosets of G by H. To determine the branching data for the action
€|H, we need to study actions of the subgroups (z;) on G/H by the right
multiplication.

The subgroups (z1) and (z3) act transitively on G/H, since otherwise
one-element orbits arise and the number 3 or 6 appears in the branching data
for the action ¢| i~ Therefore, (z1) gives nothing for the branching data of s| "
and (z3) gives the number 2. The group (z2) has either three orbits of length 1
or one orbit of length 1 and one orbit of length 2; the group (z2) brings in
the branching data for c-:| jr three 4’s in the former case and 4 and 2 in the latter
case. We see that only the former case holds. Therefore, the branching data
for H are (2,4%), and H < G.

Since the product of three elements of order 4 in abelian or dihedral groups
of order 8 is not an element of order 2, we infer H = (3.

Let L = (y) be a Sylow 3-subgroup in G. Observe that it is not unique.
Otherwise, (z1,x2,z3) = (:z:l, (.’61_1.’.!73_]),:53) = (z1,z3) = (z3) # G. There-
fore, y acts on H by conjugation, as an element of order 3 in Aut(H). Since
all elements of order 3 in Aut(Qs) are conjugated, we infer

G={(Qsy|v*=1, vy liy=j, y iy =k, y ky = 1) = SLy(3).

We now prove that each generating (3,4,6)-vector (z1,z2,z3) for G
is equivalent to the vector (y,—i,iy~!) relative to the action of the group
Autt(G*) x Aut(G). Applying an appropriate automorphism in Aut(G), we
may assume that z; = y. The group (y), acting by conjugation on the set of
all elements of order 4, gives two orbits, {z,7,k} and {—7, —j, —k}. Therefore,
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we may assume that either zg = ¢ or z3 = —i. The former does not suit us,
since in this case |z3| = |z122| = 3. Thus, we arrive at the vector (y, —i,1y71).

So, there exists at most one class of actions of groups of order 24 on T}
with branching data (3,4, 6).

In what follows, for an arbitrary action e: G — Homeom™ (T}) and a sub-
group H < G, we write out possible branching data for the action 5| o omitting
a detailed analysis of actions of the generating vector entries on the set of right
cosets G/H. If this is the case, we make a choice among the already known
branching data for H-actions.

2.3. Actions of cyclic groups. Let G be a finite (not necessarily cyclic)
group and let e: G — Homeom™ (7;,;) be an action with branching data (p :
mi,. .., ms) whose generating (p : m1,...,m;)-vectoris (z1,...,Zp, ¥1,-- -, Ypi
21,...,%). Given a nonunity element g € G, the symbol |T£[ stands for

the number of fixed points of g on Tj.
Recall (see [2,4]) that

721 = [Na (o) 3 2L, ”)
j=1

where 6;(g) equals 1 if g is conjugate to a power of z; and 0 otherwise;
if G = (g) then |T?| is equal to the number of j’s for which |G| = m;. (8)

Proposition 5 [5]. Let the group Z, act on the surface Ty of genus
o > 2 with branching data (p : my,...,m;). Then every equivalence class of
generating (p : my,...,m,)-vectors contains the vector (z1,...,Zp, Y15 Yp;
Z1,...,%), where zg = ++- =z, = y1 = -»» = Yy, = 0 and =) generates
Zin/Zm, m = lcm.(my,...,m;). Furthermore, with the use of the trans-
forms p1,..., s, we can make sure that the vectors (z1,1,...,1521,...,2r)
and (z4,1,...,1;21,...,2) are equivalent whenever izl € (21,...,2).

Proposition 6 [2: p.256]. Let the group Zy (n > 1) act on the surface To
of genus o > 2. Then

1) n < 4o +2;

2) if n is a prime number then eithern =20 +1orn <o+ 1;

3) ¢(n) < 20, where ¢ is the Euler function.

This proposition yields that possible values of n for o = 4 are
2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18. (9)

Our theorem implies that these values are realized.
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2.4. Actions of dihedral type groups for p = 0. In this subsection, A
denotes a finite abelian group nonisomorphic to Zg X -+ - X Zg and the symbol

A stands for the extension of dihedral type:
A= (A,m I z2=1,a"=a"1(a € A))

Hence, A is an automorphically admissible subgroup of A.

We say that ordered sets (af,...,a}) and (af,...,a}) of elements in A
are equivalent if we can pass from one to the other using a finite number of
the following transformations:

ni;j: interchanges e; and a; provided that |a;| = |a;|, i # 7;

ni: takes the inverse of a;;

7: substitutes 7(ag) for ax, k =1,...,s (7 € Aut(A4); 1,7 € {1,...,s}).

An ordered set (ai,...,as) is called a weakly generating (k1, ..., ks)-vector
for Aif2 <k <+ L kg, |ag| = ki, ..., |as| = ks, and (a3,...,a,) = A
(cf. Definition 1).

Given a generating vector (zi,...,2;) for the group A, its A-part is
the vector obtained by deleting the entries which does not lie in A.

Lemma 2. Let (2,...,2,) and (2},...,2;) be equivalent generating
(mi,...,m;)-vectors for A (see Section 1). Then their A-parts are equivalent
(in the above sense).

The proof follows from Proposition 2.

Lemma 3. Any generating (m1,...,m,)-vector with mgy > 3 for the group

A is equivalent to a generating vector of the form (z, za; 1. 03_1, 75 R ,a,-),
where (a3, ...,a,) is a weakly generating (mgs, ..., m.)-vector for A.

Proof. Let (21,...,2r) be a generating (mj,...,my)-vector for A. Since
3<mg <---<my, we have zy,...,2; € A. Using the relations (z1,...,2) =

A and z12z2---2z; = 1, we conclude that exactly two elements of (21, 22, 23)
lie in the coset zA and the third one, together with 24,...,2z;, generates A.
Applying one of the transformations id, 63, and 0,0, we can obtain a vector
(zi, B0 Bh By ote ,z,-) such that z},2} € zA and 2} € A.

Let 2] = za, a € A. Then the automorphism

T — :m‘l,
T

b—b (be A)
transforms the vector (z’l, o5 255 2R3 5 v z,-) into the vector (J:, gy A z,-) :
= LE i
where 2" = 2271 .- 27" (24) 7, since the product of all entries is equal to 1.

It remains to assign a3 = 2} and a; = z; for 1 > 4.
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Lemma 4. Let my < -+ < my, miy = mg = 2, and my > 3.
Then there exists a bijection between the equivalence classes of generating
(mi,...,m;)-vectors for A and the equivalence classes of weakly generating
(ma,...,ms)-vectors for A.

Proof. Define a map ¥ from the set of weakly generating (ms,...,m;)-
vectors for A into the set of generating (2,2,ms,...,m;)-vectors for A as
follows: the image of (as,...,ar) is the vector (z,za;*- e N Ty
Prove that U agrees with the equivalence relation. It suffices to show that
the vectors 1, = (:r,a:b,',"l ---ba_l,b;;,...,b,-) and t, = (w,mar‘l . -a;l,a;;,
...,a,) are equivalent whenever (bs,...,b) is the image of (a3y...,0;) un-
der one of the maps n;j, ni, and 7.

To obtain the vector {; from the vector #4, in the cases n;; (1 < 1 <
j < r—2), ni, and 7 € Aut(A) we use the respective transformations
Oipa--- 05054107 -0, 0ipa0;--- 0303057 - 07107, and the automor-
phism 7 € Aut(ﬁ), 7(z) = z and 7(y) = 7(y) for y € A.

Therefore, we may define a natural map ¥* from the set of equivalence
classes of weakly generating (ms, ..., m,)-vectors for A into the set of equiv-
alence classes of generating (2,2, ms, ..., m.)-vectors for A By Lemma 3, U*
is surjective and, by Lemma 2, ¥* is one-to-one.

Lemma 5. For the group D3 = (z,y |22 =y =1, a7 'yz = y~l), any
generating (2%)-vector is equivalent to the vector (z,z,z,z,1Y,zY).

Proof. Let (z1,...,76) be a generating (2°%)-vector for D3. Denote by
n(z), n(z?), and n(myz) the number of its entries equal to z, z¥, and 2’

The group D3 acts by conjugation on the set {x,zy,myz} of all its involutions
as the whole permutation group on three symbols. Conjugating the vector
(z1,.--,z6) by a suitable element of D3, we may suppose that

2 2

n(z) > n(z?) > n(a?’), n(z) +n(a") +n(z*" ) =6. (10)
Next, applying appropriate transformations of the form 6;, we may assume
that all z’s are situated before z¥ and the latter in turn are situated be-

fore z¥°. In the set of all these vectors, the only vectors that satisfy (10) and
the properties z1 -2 = 1 and (z1,...,26) = D3 are

2 2
(m,x,:ry,:vy,zy ,zy) and (z,2,2,2,27,27).

But they are equivalent, since the second vector is obtained from the first
one with the help of the transformation 04_]3365_194.
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Lemma 6. For the group Dy = (z,y | 22 = y* = 1, z7lyz = y71),
there exist only two equivalence classes of generating (2*,4)-vectors; they are
defined by the vectors (z,z,z,zy "', y) and (z,zy~, 4%, %, v).

Proof. Let (z1,...,z5) be a generating (2*,4)-vector for Dy. Conjugating
it by the element z if necessary, we may assume x5 = y. T'wo cases are possible.

1. Assume that the involutions z1, 2, 3, 4 are not central. In this case,
some of them coincide (otherwise they are equal to the involutions z, zy, zy?,
and zy® up to permutation and z;---z5 # 1 even modulo the commutator
subgroup). Using transformations of the form Gjil, we may assume that z; =

79 and, using an automorphism of the form =z — zy', y — y, we may assume
that 1 = 29 = z. Then z3z4 = :c;lwl"lazs_l =y~ and we have the following
four possibilities for the pair (z3,z4): (z3,24) = (zy',zy'"1), i = 0,1,2,3.
Since the group (f3) acts transitively on the set of vectors (z, z, zy', oyt y),
i =0,1,2,3, all the vectors are equivalent to the vector (z,z,z,zy™!,y).

2. Assume that some of the elements z,, z9, z3, and z4 are equal to
the central involution y2. In view of the condition zjz3---2z5 = 1, there are
only two such elements. Using transformations of the form 9;-':1 , We may assume
1271 = y~! and, arguing as at the end
of case 1, we arrive at the vector (z,zy~1, 32,42, y).

The vectors (z,z,z,zy~',y) and (z,zy~',y% 3% y) are nonequivalent
since transformations of the form #; and automorphisms preserve the num-
ber of vector entries lying in the center.

that z3 = x4 = y%. Then z1z3 = .1:5_1x4_

Lemma 7. For the group Dg = (z,y | 22 =y® =1, 27 lyz = y~1), any
generating (2°)-vector is equivalent to the vector (z,z,zy, zy*, y3).

Proof. Let (z1,...,z5) be a generating (2°)-vector for Dg. Since all its
entries are involutions and zj---z5 = 1, one of the entries is equal to ya.
Applying a transformation of the form 0;1, we may assume T5 = y°. Prove

that z; # y® for ¢t = 1,...,4. Assume the contrary. Since z;---z5 = 1, at
least two elements among the first four are equal to y3. As before, we may
assume that 23 = z4 = y3. Then z1z2 = y® and (21,...,75) = (21,3°) # G,
which yields a contradiction.

Therefore, the elements z; (i = 1,...,4) are noncentral involutions and,
thus, they are of the form zy*, k; € {0,1,2,3,4,5}. We prove that there
exists a vector equivalent to (z1,...,24,y°) and such that two entries among

the first four coincide.

Assume that all k; are distinct. In this case, there exist subscripts 2
and j such that 1 < ¢ < j < 4 and |k — kj| = 1. After the transformation
0j—10j—2---0i11 the elements zy% and zy® will occupy ith and (i 4+ 1)th
positions. Observe that after the subsequent application of the transformation
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§? we obtain the elements gykitski=k) and pykits(ki =k:) on these positions.
Let the element zy*t occupy another position (different from i and i+ 1). Then
this element occupies the position ¢ for s = (ky — ki) /(k; — ki).

Thus, we may assume that z; = z; for some iz and j (1 < i < j < 4).
With the help of transformations of the form 6; and automorphisms of the form
vi: ¢ — zy', y — y, we can obtain 21 =z9 =z. Then 374 = :1:2_1:1:]_]:35_1 =y3.
Hence, (3, 2z4) = (zy®, zy**3), a € {0, £1,+£2,3}. Taking it into account that
(z1,...,25) = Dg, we obtain a € {#1,£2}. The automorphism z — =z,
y — y~ ! substitutes —a for a. The transformation 03 substitute a + 3
(mod 6) for a. Therefore, each generating (2%)-vector for Dg is equivalent

to (z,z, zy, zy*, y3).

3. The proof of the main theorem

3.1. Elimination of some groups.

Lemma 8. Groups of orders 27, 30, 45, 48, 54, 90, and 108 cannot act
on Ty effectively while preserving the orientation.

Proof. Let G be one of the above-mentioned groups. Assume that
the group G acts on Ty effectively and preserves orientation. Then only p = 0
and (mj,mg, m3) listed below satisfy (2), (5), and the condition that all m;
are in the list (9). Let (z1,2,73) be a generating (m1, ma,m3)-vector for G.
In each of the cases below we arrive at a contradiction.

1. Let |G| = 27 and let the branching data be (32,9).
Since G is nilpotent, we have (z3) < G. This and the equality G = (x2,z3)
imply G = (z3) X\ (z2). Let z;'z3zy = z}. Then 1 = z} = (%—1%—1)3 =

=] =1 = -2 - 24—
z3 1.g; 2] 12925 2:1:3 102 = g3+ 1 However, the congruence t?+t+1 =0

(mod 9) is not solvable, a contradiction.

Using this fact and the Sylow theorem, we eliminate the cases |G| = 54
(the branching data are (2,3, 18)) and |G| = 108 (the branching data are
(2,3,9)).

2. Let |G| = 30 and let the branching data be (2, 5, 10).
An arbitrary group of order 10 can only have the branching data (22,5%) or
(5,10%). However, this contradicts the results of Subsection 2.2 applied to G
and H = (z3).

3. Let |G| = 45 and let the branching data be (32, 5).
This case can be excluded, since z; and z3 lie in the unique Sylow 3-subgroup
and do not generate G.

4. Let |G| = 48 and let the branching data be (2,4, 8).
Let H be a Sylow 2-subgroup in G. The following branching data are possible
for an arbitrary group of order 16: (2%,8), (4%,8), and (2,16%). None of them
is appropriate for H in view of Subsection 2.2.
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5. Let |G| = 90 and let the branching data be (2,3,10).
The group G is not simple, since the order of any finite simple noncyclic
group is divisible by 4. Therefore, the group G has a normal subgroup of
index 2, 3, or 5. We can exclude the first two possibilities taking into account
cases 2 and 3 already considered. Assume now that H 4G and |G : H| = 5.
Let (7 : ni,...,nt) be the branching data for H. The Riemann-Hurwitz
formula for H implies that 7 = 0 and the numbers ny,...,n do not contain
five twos. However, this fact contradicts Proposition 4.

3.2. Actions with branching data (p : m1,...,m;), where p > 0. All
the orders |G| and the sets (p : m1,... ,myr), p > 0, satisfying (2) for o = 4,
condition (5), and such that the numbers my,...,m, are in the list (9) are
presented below. Some of the cases do not lead to G-actions.

1. 1G] =2, (1:29).

2. |G| =2,(2:2%).

3. 16| =3, (2: -)
In these cases, the equivalence classes of G-actions are unique and determined
with the help of Proposition 5 (see Table 1).

4,|G| =3, (1:3%).
Let G = (z | z° = 1). By Proposition 5 we can choose a generating vector
(a1, B1;71,72,73) to satisfy the equality a1 = 1 = 1. Next, since 11, 72,
and 73 are elements of order 3 and 1 = [a1, Bilma23 = 717273, all i are
equal to either z or z?. The last case can be reduced to the former if we use
an automorphism of the group G. Thus, each generating (1 : 3%)-vector for G
is equivalent to (1,1;z,,z).

5. |G| =4, (1:2°%).
Let (a1, B1;71,72,73) be a generating (1 : 23)-vector for G. It is easily seen
that G = Zo x Zy. Let G = (z,y |22 =9* =1, a3y = yz). The equality
1 = [eq, Bi]1172y3 = 717273 implies that the involutions 71, 72, and 3 are
distinct. Employing Aut(G), we may assume that 71 = 2, 72 = ¥, and y3 = zy.
In this case, the transformations pi¢ and vjip~1 are as follows: pip: a1 — 017i;
u_,'q,b_]: Bi — Pivj. Using them, we obtain @y = B1 = 1. Thus, every
generating (1 : 23)-vector for G is equivalent to the vector (1,1;z,y,zy).

6. |G| =4, (1:4?).
We have G = Z4. Let (1, B1;71,72) be a generating (1 : 4?)-vector for G =
(z | #* = 1). The equality [@1, B1]7172 = 1 implies that one of the elements 71
and 73 is equal to z and the other to z~1. Considering the transformation 1,
we may assume that 73 = z and v = z~1, By Proposition 5, we derive that
the initial vector is equivalent to (1,1;z,z71).

7. |G| = 6, (1:2%).
The following two cases are possible: G = Zg and G = S3.

(a) G = {z | 2® =1) = Zs.
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Proposition 5 implies that every generating (1 : 2%)-vector for G is equivalent
either to (z, 1; 2%, z%) or to (z71, 1; z3,2%). But these vectors are Aut(G)-equiv-
alent.
(b) G = (a:,y | 2=yt =1, z7lyz = y“1> 2 53;
Let (a1, B1;71,72) be a generating (1 : 22)-vector. We show that it is equivalent
to the vector (y, 1;z,z). Assume the involutions 1 and 72 to be distinct. Since
[o1, B1]7192 = 1, either oy or By is an involution. Without loss of generality,
we may assume that B is an involution, since the transformation w1 takes
(a1, B1;71,72) into (ﬁlal, al‘]; 71,'72). Since 91'1 transforms (a1, B1;71,72)
into (al,ﬁl;*n'yz'yl“l,'yl) and 41 # 72, we may assume that 1 # 72. Then
the element 231 is of order 3 and presents a product of different involutions.
We now consider the chain of equivalent vectors

(a1, Bi; 11,72)5 (%, B1; (12B1) 71 (72B1) 1, v2) B (%, Br; (1261)* 71 (1281) 2, 712) -

Since the triple cycle acts transitively on the set of involutions, the element
(72[31)‘71(’7251)_'; coincides with 79 for some i. Therefore, in what follows we
assume v, = 2. The condition [a1, B1]7172 = 1 implies that [eq, f1] = 1, i.e.,
o is a power of By or vice versa. With the help of transformations ¢ and 1,
we may obtain f; = 1.

Since (e, 1;71,71) is a generating vector and |y1| = 2, either oy or aim
is a triple cycle. Without loss of generality, we assume || = 3, since

(a1, 1;91,72) B (@171, 171, m)-

It remains to note that the group Aut(G) acts transitively on the set of
all pairs (a triple cycle, an involution). Therefore, the vector (ex, 1;91,71) is
equivalent to the vector (y, 1;z,z).

8. |G| =8, (1:4).

In this case, a G-action is impossible, since the commutator subgroup of any
group of order 8 has order at most 2 and, thus, condition (3) fails.

9. |G| =9, (1:3).

This case cannot be realized too, since any group of order 9 is abelian and we
arrive at a contradiction with condition (3).

10. |G| =12, (1 : 2).

Let (a1, B1;71) be a generating (1 : 2)-vector for Gj in particular, [e1,B1lm =1
and |y1| = 2. Therefore, G is a nonabelian group, G % Da 3,1, and G 2 Dg
(in the last two cases, G' = Z3). It remains only to consider the case

G = Ay = (z,y | z = (12)(34), y = (123)).

Prove first that, for arbitrary triple cycles d; and dy in As, either dady or dy 1d,
belongs to the Klein group K. Indeed, the group K acts transitively by
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conjugation on four Sylow 3-subgroups of the group (. Therefore, there exists
a k € K such that either dp = k—1dik or dy = k"ldl_lk. In the former case,
d;ldy = k~'d;'kd; € G' = K and, in the latter, dody = k™'dy 'kdy € K.
Therefore, we may assume that either @ or By lie in K (otherwise, applying
the transformation ¢ or ¢!, we can replace a; by Bia; or ﬁl—lal and refer to
the above arguments). The elements oy and B are not in K simultaneously;
otherwise (a1, B1,m) # G. Thus, either &y € K and f ¢ K or a1 ¢ K and
p € K.

Since (a1, B1;m) v, ((alﬁl)sal, alﬁl;'}q), the last case can be reduced
to the first one in view of the above assertion for an appropriate ¢ = =1.
Therefore, assume |a;| = 2 and |B1| = 3. But Aut(A4) acts transitively on
the set of pairs whose first element is of order 2 and the second is of order 3.
Consequently, the vector (a1, 81;71) is equivalent to the vector (m,y; [z, y]_l).

3.3. Actions with the branching data (0 : my,...,m;). Below we examine
possible orders of groups G and possible branching data for p = 0. In the case
of abelian or dihedral groups, we shall not specify in detail how the generating
vectors in Table 1 can be obtained. For the abelian case, it can be done
directly. For the dihedral case, generating vectors can be found with the use
of Lemmas 3-7. In particular, we begin with the case |G| = 6.

Remark. If the number n = |G| occurs in the branching data for G
then G = Zy,.

1. |G| =6.

In this case, the following branching data are possible: (2%,3,6), (3%,62),
(2,6%), (2°), and (2%,3%). For the first three variants, G = Zg; for the forth,
G = Ds, since Zg is not generated by involutions; for the fifth, either G = Zg
or G = Dj.

2. |G| =8.

We use the fact that a group of order 8 is either abelian or isomorphic to Dy
or (Js.

2.1. (22,8?). Then G = Zs.

2.2. (24,4). Then G is nonabelian, since, in an abelian group, the product
of elements of order 2 is not an element of order 4. Next, G % Qg, since (Jg
contains only one element of order 2 and, hence, condition (3) does not hold.
Thus, G = Dy.

2.3. (2,4%). Then G is nonabelian and G % Dy, since in Dy the elements
of order 4 generate a proper subgroup. It remains to analyze the group @s.

Let (z1,%2,73,24) be a generating (2,4%)-vector for Q. Then z; = —1
and zg,73,z4 € {%i,+j,+k}. Moreover, the elements xf;l, zF!, and a:ffl
are distinct; otherwise condition (3) is violated not only in Qg but also in
the quotient group Qs/(z1). Since the group Aut(Q@s) acts transitively on
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the set of ordered pairs (a,b), where a,b € {zi,+j,+k} and a # b+, we may
assume that zg = ¢, z3 = j. Therefore, z4 = (z12923)~" = k.

Thus, every generating vector is equivalent to (—1,z, 7, k).

3. |G| = 10.

3.1. (5,10%). Then G = Zyo.

3.2. (22,5?). In this case, it is possible that G = Z;g and G = Ds.

4. |G| =12.

An arbitrary group of order 12 is either abelian or isomorphic to one of
the groups Dg, D4 3,1, and Aq.

4.1. (3,12%), (4,6,12). Then G = Z5.

4.2. (6%). Then G is abelian, since each of the groups Dg and Dj3,—1
has a single subgroup isomorphic to Zg (hence, in the cases G = Dg and
G = D4 3,1 the generation condition does not hold) and A4 does not contain
elements of order 6.

4.3.(22,3,6). In this case, G is either abelian or isomorphic to Dg, since A4
does not contain elements of order 6 and condition (3) does not hold in Dy 3 1
in view of uniqueness of an involution.

4.4. (2°). Then G = D, since subgroups generated by all involutions in
an abelian group of order 12, in A4, and in D4 3 ) are proper.

4.5. (2,3%). Since the Sylow 3-subgroups are uniquely determined in
an abelian group of order 12, in Dg, and in D4 3 1 and, hence, condition (3)
is violated, we have

G = Ay = (z,y | == (12)(34), y = (123)).

Let a = (z1,%32,73,74) be a generating (2,3%)-vector for A4. Prove that, for
some vector (z}, =}, 7%, ;) equivalent to @, two of the three Sylow 3-subgroups
(z4), («%), and (z}) coincide. Assume the contrary. Then, in particular,
the subgroups (z2), (z3), and (z4) are distinct.

Let P be the forth Sylow 3-subgroup in A4. Consider the vectors 03a =
(zl, T2, T4, :1:4“}:7;32:4) and 9;2a = (*, mlzzzfl, z3, 34). By assumption, we have
(zg'z3z4) # (z2), (z4) and, moreover, (z 'z3z4) # (z3), since Na,((z3)) =
(z3).

Thus, (.'c;l:z:;a,:c.;) = P. Similarly, (.7:13:2:::1—1) = P. Then the second and
the forth entries of the vector 9391—20 = (*,mlmga:l_l,:c4, x;lmam) generate P,
a contradiction.

Thus, without loss of generality, we may assume that two of the three en-
tries z2, x3, and x4 of the initial vector a generate the same Sylow 3-subgroup.
Applying transformations of the form 6;, we may assume that (z2) = (z3).
Since z1zoz3zs = 1, |z1| = 2, and |z3| = |z3| = |z4| = 3, we have z3 = z3.
Next, the group Aut(A4) acts transitively on the set of ordered pairs (g, k),
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where |g| = 2 and |h| = 3, g, h € A4. Therefore, the initial vector is equivalent
to (z,¥,y,y 2x).

4.6. (2%,42%). This case is impossible, since A4 and Dg never contain ele-
ments of order 4. The group D43 1 is rejected, since it has a unique involu-
tion and, hence, the generation condition and (3) do not hold simultaneously.
An abelian group is not appropriate either.

5. |G| =15.

Then G = Z;5 and among the possible branching data (3,5,15) and (5%) only
the first data are realized.

6. |G| = 16.

6.1. (2,162). Then G = Zys.

6.2. (2%,8). Let (z1,22,23,24) be a generating (23,8)-vector for G. Then
IG : (:1:4)| = 2. Since (z1,22,23,74) = G, we have z; ¢ (z4) for some
i € {1,2,3}. Using transformations of the form @, we may assume that
z; ¢ (z4) and thus G = (z4) X (z1). The group G is nonabelian, since
the product of elements of order 2 in an abelian group is not an element of
order 8. The following three possibilities remain: G = Dg and G = D3 g +3 =
(z,y |22 =92 =1, z7lyz = yﬂ). The first can be considered with the help
of Lemmas 3 and 4.

Consider the second and third possibilities. The group Aut(Dj g +3) acts
transitively on the set of all ordered pairs (a,b) such that (a,b) = Dag +3,
la| = 2, and |b| = 8. Therefore, we may assume that 7 = = and z4 = y. Since
the equality z1zoz3z4 = 1 is valid in all quotient groups of G, in particular
in G/(z4), one of the elements z3 or z3 lies in (x4) and the remaining element
lies outside of (z4). Applying transformations of the form Bj-tl, we may assume

that z9 ¢ (z4) and z3 € (z4). The only element of order 2 in the group
(z4) = (y) is y*. Therefore, 23 = y* and, hence, 73 = zy 'z} 'z;' = zy3.
However, |xy3| # 2 in the groups Da g +3 and, thus, a generating (2*, 8)-vector
does not exist in these groups.

6.3. (42,8). Let (z1,z2,23) be a generating (42,8)-vector for G. Since

|G' : (m3)| = 2, we have z? = z} and z§ = zj. This fact, together with

lxs_l, implies that :vl_la:szl = mgl and G = (:r:,y |

the equality z3 = =z
y® =1, 2® = ¢y, z7lyz = y~!). The group Aut(G) acts transitively on
the set of ordered pairs (u,v) such that (u,v) = G, |u|] = 4, and |v| = 8.

Therefore, we may assume that z; = z and z3 = y and, hence, 29 = z =1y~ 1.

7. |G| = 18.

7.1. (2,9,18). Then G = Z1s.

7.2. (2%,3%). Let (z1,72,73,74) be a generating (2%,3%)-vector for G.
Let H be a Sylow 3-subgroup in G. By Proposition 3, H has the branching
data (3*) and, hence, H = Z3 x Z3. Since |z1| = 2, we obtain G = H X (z1).
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If (z;) acts trivially on H then G = Z3 X Z3 X Z3 and this case can be easily
eliminated. If z; acts on H by inverting the elements then we consider this
case with the help of Lemmas 3 and 4. In view of Lemma 1, it remains to
examine the only case

G=(z,y|2*=9"=[z,y] =1) X (B). (11)

Let (z1, 22,3, z4) be a generating (22,3?)-vector for G. Since the elements B,
Bz, and Bz? are of order 2 in G and they are conjugate (by the elements z*!),
we may assume that z; = B. Then 2 = |z| = |zl_1mzl:1:3_l| = |B:z:4_1:1:5'1|
and, as a consequence, T3T4 = z* for some i = 0,1,2. The elements z3
and x4 are not in (z) simultaneously; otherwise, (z1, z2, z3, 74) = (1, 23,24) =
(B,z) < G. By analogy, z3 and z4 are not in (y) simultaneously. The third
case (one of the elements z3 or 4 lies in (z) and the other in (y)) can

be excluded too, since the condition z3z4 = z' is violated. Therefore, one
of the elements z3 or z4 is equal to zPy?, where p,q € {—1,1}. Applying
the transformation 05’1 and the automorphism @: z — z?, y — y9, B — B,
i—1

we may assume that z4 = zy and, thus, z3 = 2'~1y~!. The transformation 02'2

substitutes —(i — 1) for (i —1). Therefore, we have z3 = y~! or z3 = zy~!, up
to equivalence.
Thus, in this case, we obtain the following two vectors:

(B, Bm_lzy_ls zy) and (B, B:z:,xy_l,my).

They are not equivalent, since the former vector has an entry lying in the center
of G and the latter has not. Transformations of the form #; and automorphisms
of the group G preserve the number of central elements in vectors.

7.3. (2%,6). Prove that this case is impossible. Assume the contrary.
Let (z1,z2,23,74) be a generating (23, 6)-vector for G. Then the normalizer
of the involution mi either coincides with G or has index 3 in G. Therefore,
the number of involutions in G is equal to 1 or 3. If there are identical
involutions among z1, =3, and z3, then obviously |zizez3] = 2. The last
equality contradicts the conditions zizozazs = 1 and |z4] = 6. If =1, zg,
and z3 are three distinct involutions in G then the involutions z1, z3', and z3*
are also distinct. In this case, z3' = z3 and z3' = z9 (if zf"' = g; for i # j then
|(zi, z;)| = 4). Whence it follows readily that |z1z223| = 2; a contradiction.

7.4. (3,6%). As in 7.2, we can establish that G = H X (z), where H =
Z3 x Zg3 is a Sylow 3-subgroup in G and z is an arbitrary involution in G.
Then G is either abelian or of dihedral type or has the form (11). The first
case can be considered directly. The second case is rejected, in view of the lack
of elements of order 6 in such a group. Consider the third case.

Let (z1,%2,73) be a generating (3,62)-vector for the group G in (11).
All elements of order 6 in G have the form z'y? B, where i = 0,1,—1 and
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4 = —1,1. With the help of the automorphisms ¢;;: B — B, y—oyl, z—
z, they can be reduced to the element yB. Using ;; and transformations
of the form @, we may assume that z3 = yB. Then the element z3 of
order 6 has the form 2Py?B, where p = +1 and ¢ = +1 (if p = 0 then
(z1,x9,23) = (z2,23) = (y, B) < G, which is impossible).

Applying the automorphism z — ¢~y — y, B — B, we may derive that
z3 is equal to zy*1 B. In this case, two generating (3, 62)-vectors, (zy,y B, zyB)
and (m,yB,a:y_lB), arise. They are not equivalent, since the first entry of
the first vector is not an automorphic image of one of the entries of the second
vector.

8. |G| = 20.

8.1. (2%,5) and (2,10%). Let H 2 Z5 be the only Sylow 5-subgroup in G
and let L be some Sylow 2-subgroup in G. Then G = HX L. Using the method
of Subsection 2.2 and our classification for the groups of order 4, we conclude
that L has the branching data (27) or (1 : 2%) and, hence, L = Zy x Z3. Since
at least one of the three involutions in L acts as identity on H = Zs, we have
G = Zio N Zo. Then either G = Zjg X Zg or G = Djg. The branching data
for G are (2,10?) in the former case and (23,5) in the latter.

8.2. (42, 5). Then G = Zs X\ Z4 and either G = Zay (which is immediately
discarded in view of (3)) or G = Dy 1 = (z,y |zt =9y® =1, a7 lyz = y?)
or G = Dy 59. Consider the second and third cases simultaneously.

Let (z1,z2,z3) be an arbitrary generating (42,5)-vector in G. With
the help of Aut(G), we may assume that z3 = y. Let Z; and Z3 be the images
of 1 and z2 in G/(y). It is easily seen that |Z;| = |Z2| = 4 and z;Z = 1.
Hence, z1 = y'z® and z9 = y/z ¢ for some i, j, and € € {—1,1}. The transfor-
mation §; replaces (in particular) € with —e. Therefore, we may assume that
z1 = y'z. Applying the inversion of the automorphism ¢;: z — y'z, y — y to
the vector (z1,z2,z3), we obtain the (42, 5)-vector (z,z71y~1,y).

9. |G| = 24.

9.1. (23,4). Let G be a group of order 24 with a generating (23,4)-vector
(z1, 22,3, 24). Since a group of order 24 is solvable, G' has a normal subgroup
of index 2 or 3. In the latter case, all the elements z1, 29, 23, and z4 are in
the only Sylow 2-subgroup and do not generate G; this is impossible.

Let H be a subgroup of index 2 in G. In accord with Subsection 2.2 and
our classification for groups of order 12, we conclude that either the branching
data for H are (2°) and H = Dg or the branching data for H are (1 :2) and
H = Ay

In the former case, H & Dg contains an automorphically invariant sub-
group L = Zjz. Therefore, L 4 G, |Cg(L)| = 12, Cg(L) 2 Ds, and
Cc(L) # A, a contradiction.
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Consider the latter case, H = A4. Since the involutions z;, z3, and z3
generate G, one of them lies outside of H/ and, hence, G = A4 X\ Z3. The case
G = A4 x Zg is impossible, since such a group has no elements of order 4.
For the same reason, G is not isomorphic to a semidirect product of A4 by
means of an inner automorphism.

Thus, G = S4. Since |z1z2z3] = 4 and, hence, z1z2z3 is an odd per-
mutation, either the involutions z;, z2, and z3 are transpositions or one
of them is a transposition and the others are involutions in the subgroup
K = {e,(12)(34),(13)(24), (14)(23)}. In the latter case, (z1,z2,z3) is con-
tained in a Sylow subgroup of Sy, which is impossible.

Next, all three transpositions z1, z2, and z3 are distinct (otherwise, their
product is a transposition) and contain the symbols 1, 2, 3, and 4 (otherwise,
they do not generate S4). With the use of transformations of the form 6;, we
can achieve that they have a common symbol. Indeed, if this is not true for
the transpositions zi, z3, and z3, then two of them have no common symbols.
With the help of transformations of the form 0;, we may assume that these
elements are 1 and z3. Then z3 has a common symbol with z; as well as
with z9. Applying 2, we obtain the involutions zy, z3, and :c3'1:c2:r:3 which
have one common symbol. Finally, conjugating by an appropriate element
of S4, we may assume that z; = (12), z2 = (13), and z3 = (14) and thus
z4 = (4321).

9.2. (3,4,6). This case was examined in the example of Subsection 2.2.

9.3. (2,6,12). Let (z1, 72, x3) be a generating (2, 6, 12)-vector for G. Since
]G : (z3)| = 2, we have 2} € (z3) and, therefore, z = 23, where ¢ = +£1.

L= O U —(4e+1
But z2 = z; 1x31. Hence, z] 1:7:3 lzl 1m31 = mgs and zgl = w3( et1)

|z3| = 12, the only case € = 1 can occur. Thus,

. Since

1

2 12 - =5\ ~v
G= (a:l,.rg ] zi1=1, z3° =1, 7, z371 = 24 ) = Daaz.—s-

Let now the group G be given abstractly as follows: G = (z,y | 22 =1, 32 =1,
zlyz = y_5>. Then every generating (2,6, 12)-vector for G is automorphi-
cally equivalent to the vector (z,zy™!,y).

9.4. The branching data (2, 8%), (4%), and (32, 12) are impossible. This can
be proven with the help of the results of Subsection 2.2 and already known
branching data for the groups of order 8 and for Zjs.

10. |G| = 32, (2,4, 16).

As in case 9.3, we establish that G = (z,y | 22=1, 9% =1, z7lyz = y7) =
Ds,16,7 and every generating (2, 4, 16)-vector for G is equivalent to (z,zy ™, y).

11. |G| = 36.

11.1. (2%,3). Let (z1,%2,z3,%4) be an arbitrary generating (2°,3)-vector
for G. Assume H < G and L to be a Sylow 3-subgroup and a Sylow 2-sub-
group, respectively. By Proposition 3 and the above classification for actions
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of groups of order 9 and 4, H has the branching data (3*) and H = Z3 x Zs,
L has the branching data (27) or (1:2%) and L = Z x Z3. Moreover, Propo-
sition 4 implies H < G. The group L acts without kernel on H; otherwise,
there exists a subgroup M in G isomorphic to Z3 X Z3 X Zy. In accord with
our classification, such a group M has the branching data (3,62) and this fact
contradicts Proposition 3.

Up to conjugation, GL3(3) has a single subgroup isomorphic to Zg x Zg
and this implies that

G=(z,y|a®=y*=[2,9]=1)N(B,A| B? = A’ = [B, 4] = 1),

where B~1zB=z"1, B-YyB=y, A lzA=2z"1, and A" lyA =y 1.
We need the following automorphisms of G:

1

Op:z—zY; O:y—>y™Y; p:A— Ay; 7: B— Bz, A— Az

Relative to the action of the group (0:,0y,u,7), the set of all involutions
in G is decomposed into the following three orbits: {Az'y’}, {BAy?}, and
{BzP}, where 1, j, p, and ¢ range over the set {0,1,—1}. The product of two
involutions in the same orbit lies in (z,y).

We claim that the involutions zj, z2, and z3 belong to distinct or-
bits. Indeed, if, for example, z; and z3 belong to the same orbit then
Ty = T1Z3 (:B;.l)za € (z,y), which is impossible. Applying transforma-
tions of the form 6; we may assume that z;, z2, and z3 are involutions of
the first, second, and third orbit, respectively. Next, the automorphism 7%y ~7
sends the vector (z1,z2,23,24) to an equivalent generating vector of the form
(A, BAy™, Bz™,z~ ™y~ ™). Observe that n # 0 and m # 0; otherwise, this
vector is not generating. With the help of the automorphisms 0, and 8y, from
this vector we can obtain the vector (A, BAy, Bz,z "y~ 1).

11.2. (2,62). Let (z1,z2,23) be a generating (2,6%)-vector for G. As in
case 11.1, we establish that G = H X\ L, where H = Z3 x Z3 and L = Zj X Zs.
We consider three subcases.

(A) Let the subgroup L act without kernel on H. Then the group G is
the same as that in 11.1. There are two types of elements of order 6 in G-
Bz'y’ and BAz'y', where i = 0,—1,1 and j = —1,1. Since the elements of
the same type do not generate G, we conclude that z9 and z3 are of different
types. Applying 05 if necessary, we may assume that zo and z3 are elements of
the first and second type, respectively. With the use of the automorphisms 6,
0y, i, and 7, we can transform any such pair (z2,23) into the pair (By, BAz)
and obtain the generating (2, 62)-vector (Azy™!, By, BAz).

(B) Assume existence of two involutions ¢ and z in L such that the first
one acts identically on H and the second does not. Then G' = (H X (2)) x (t),

where H = (z,y | 28 = y® = [z,y] = 1), and, in view of Lemma 1, either
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1 1 1

7 l2z = 271 and 27 lyz =y~ or z7lzz = 27! and 27 lyz = y. In the first
case, all elements of order 6 (in particular, 3 and z3) lie in H x (t) and, thus,
do not generate G. Therefore, only the second case can be realized and, in
this case, G = S3 X (u | ub = 1).

Note that z; is a noncentral involution in G; otherwise, (z1,z2) # G.
Since all noncentral involutions in G are automorphically conjugated, we may
assume that z; = (12). Next, the equalities (z1,z2) = G and (z1,z3) = G
imply that z; (for i = 2,3) are of the form a;u®, where a; # e and ¢; € {—1,1}.

Since z1z273 = 1, either ag or a3 is a triple cycle. Employing the transfor-
mation 3, we may assume that as is a triple cycle and, using Aut(G), we may
assume that zo = (123)u. In this case, ((12),(123)u,(13)u™"!) is a generating
(2,6%)-vector for G.

(C) Let L act as identity on H. Then G = Zg X Zg, which is clearly
impossible.

11.3. (3,42). Let (x1,72,73) be a generating (3,4%)-vector for G, let H
be a Sylow 3-subgroup in G, and let L = (z3) = Z4 be a Sylow 2-subgroup.
As in 11.1, we can establish that H & Z3 x Z3 and H < G. Prove that L
acts without kernel on H. Assume the contrary. Then the element z% lies in
the kernel of the action and, hence, in the center of G. The number of its fixed
points is equal to

= o] (5 + 2+ 2) =s0(}+1) =18

(see the definition of §; in Subsection 2.3 with regard to the fact that (z3) is
conjugate to {z3)). However, an element of order 2 can have at most ten fixed

2
T3

points (see Remark (8) and the classification for actions of groups of order 2),
a contradiction.

Thus, L acts without kernel on H. Since GL3(3) contains one conjugacy
class of elements of order 4, we have

G= (mayac | z =y3 = [33,3,’] =1,
ct=1, CzC =y, CYYC =1).

Moreover, we may assume that z3 = C. All elements of order 4 in G have
the form Cz'y’ or C~'z'y’, where i,j € {0,—1,1}. The element z3 is of
the form C~1z'y’; otherwise, the element z; = (z223)~! = 7 7y*'C? is of
order 2. In this case, zo # C~!; otherwise, z; is equal to 1. Consider
the automorphism a: z — zy, y — z 'y, C — C. It is of order 8 and
acts transitively on the set (z,y) \ {1}. Applying an appropriate power of «
to (z1,C~'z'y?, C), we obtain the vector (z},C 'z, C), where z} = y by (3).

11.4. (3%,6). Since the group G of order 36 is solvable, it contains a nor-
mal subgroup H of index 2 or 3. We can discard the first case in view of
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Subsection 2.2 and our classification. Therefore, we assume that H < G and
|G : H| = 3. If (with the notation of Proposition 3) 7 = 0 then, by Proposi-
tions 3 and 4 together with our classification, either /i has the branching data
(63) and, hence, H = Zy x Zg or H has the branching data (2, 3%) and, hence,
H = A4. If 7 > 0 then H has the branching data (1 : 2) and H = Aj.

In any case, a Sylow 2-subgroup in H is isomorphic to Zj x Zj and
automorphically invariant. It is readily seen that a Sylow 3-subgroup in G is
isomorphic to Z3 x Z3. Hence, G = (Zy % Zy) N (Z3 x Z3) and the group Z3 x Z3
acts on Zy X Zy with a nontrivial kernel M. Observe that M % Zj x Z3, since
the group Zs X Za x Z3 x Z3 cannot act on Ty with branching data (3%, 6)
(it is not generated by the elements of order 3). Therefore, M = Zj3 and
G=A4x(z|z%=1).

Since all elements of order 6 in G are automorphically conjugate to
(12)(34)z, we may assume that z3 = (12)(34)z. In view of the equalities
|z1| = 3 and (z1,23) = G, we have z1 = (ijk)z', I € {0,1,—1}. Applying
the automorphism @ € Aut(G) such that B(z) = =z, B((12)(34)) = (12)(34),
and @((ijk)m’) = (123), we may assume that 3 = (123). Thus, a generating
(32, 6)-vector for G is equivalent to ((123), (143)z~1,(12)(34)z).

11.5. (2,4,12). No group with such branching data exists; it suffices to
apply the results of Subsection 2.2 to a subgroup generated by an element of
order 12, taking account of our classification.

12. |G| = 40, (2,4,10). Let (z1,z9,23) be a generating (2,4,10)-vector
for G, let H be the unique Sylow 5-subgroup in G, and let L be some Sylow
2-subgroup in G. Then G = H X\ L. We state that L = Dy.

Indeed, if L 2 D4 then our classification for actions of groups of order 8
yields L = Zg or L = Qg. Since Aut(Zs) = Z4, the subgroup L acts on H
with a nontrivial kernel. This kernel contains the only involution in L. Then
this involution belongs to the center of G and it is the only involution in G
too. In much the same way as in 11.3, formula (7) yields a contradiction.

Suppose that

H=(z|a’=1), L=(yz|y*=1,22=1, 27 lyz=y7").

The element y acts nontrivially on H (otherwise, |zy| = 20, which contradicts
Proposition 6). Substituting zy or zy? for z if necessary, we may assume that

z centralizes H. In this case, the relation z7lyz = y!
on H as an automorphism of order 2. Therefore,

G=(:c,y,z|w5=1, yi=1, 22 =1,

2 lyz=y7, ylay =2~

implies that y acts

1 1

y 27 xZz= z)
We need the following automorphisms of G:

pirz oz (1=1,2,3,4) and 7: 2 — zy°.



34 0. V. Bogopol’skit

By the Sylow theorem, an element of order 4 in G is conjugate to y.
Therefore, assume zg = y. Since (z1,22) = G, we have 21 ¢ L. All involutions
of G that do not lie in L have the form z'zy® (i = 1,2,3,4; ¢ = —1,1).
The automorphism p‘-—l or ,u‘-_l'r transforms them into zzy (note that z; = y is
a fixed point). Therefore, we may assume that z1 = z2y and z3 = (z122)7! =
y2zz~!. Finally, we arrive at the generating (2,4, 10)-vector (zzy,y,y%zz~1).

13. |G| = 60.

13.1. (2,5%). Assume that G is not a simple group. Then there exists
a normal subgroup in G of index 2 or 3 or 5. The first case is impossible due
to Lemma 8. The second case is not suitable too in view of Subsection 2.2 and
the above-listed branching data for groups of order 20.

Assume now existence of an H < G, |H| = 12. Taking into account
the branching data for groups of order 12 and Subsection 2.2, we conclude that
H has the branching data (1 : 2) or (2%). With regard to our classification,
H = A4 in the first case and H = Dg in the second case. Let L denote the Klein
subgroup in H in the former case and the cyclic subgroup of order 6 in H in
the latter case. In both cases, L is a characteristic subgroup in H, L < G.
Let M be a Sylow 5-subgroup in G. Then L X M is a normal subgroup in G
of index 3 in the first case and of index 2 in the second case. Both situations
were eliminated.

Thus, G is a simple group and, hence, G = As. Let (z1,22,23) be a gen-
erating (2,5)-vector for G. Applying an appropriate automorphism, we may
assume that z3 = (12345). Observe that the Sylow 5-subgroups generated by
z9 and z3 are distinct because of the equality (z2,z3) = G. Since z3 acts by
conjugation on the six Sylow 5-subgroups, stabilizing (x2) and interchanging
the remaining five cyclically, we may assume that z3 € ((13452)). The ele-

ment z3 = (13452) is the only element such that z7' = zaz3 is of order 2.
Thus, we obtain the generating (2,5%)-vector ((24)(35), (12345), (13452)).

13.2. (2,3,15). Prove that groups of order 60 with these branching data
do not exist. Assume the contrary. Then G is not a simple group, because As
has no elements of order 15. Therefore, G has a normal subgroup of one
of the indices 2, 5, or 3. The first case can be excluded by Lemma 8, and
the second case can be excluded in view of Subsection 2.2 and the above-listed
branching data for the groups of order 12.

Assume now that H d G and |G : H| = 3. Taking account of Subsec-
tion 2.2 and the above-listed branching data for the groups of order 20, we
obtain the branching data (23,5) for H. In accord with our classification, we
have H = DIO-

Assume L to be a characteristic subgroup in H of order 10 and M to be
a Sylow 3-subgroup in G. Then L < G and L X M is a subgroup of index 2
in G, which has already been eliminated.

14. |G| = 72.
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In this case, G has a normal subgroup of index 2 or 3.

14.1. (32,4). There are no such groups in view of Subsection 2.2 and our
classification of branching data for groups of order 24 and 36.

14.2. (2,3,12). Suppose that G contains a normal subgroup M of index 3.
In view of our classification and Subsection 2.2, M has the branching data
(23,4) and, hence, M = Sy. Since a perfect normal subgroup is always a direct
factor of a group, we have G = M x Cg(M). Therefore, both G and M contain
a subgroup of index 2.

Thus, we need to consider the case in which G contains a subgroup H of
index 2. In view of our classification and Subsection 2.2, H has the branching
data (3%,6) and H = A4 x Z3. Since the branching data for G are (2,3,12),
G is generated by some elements of order 2 or 3. Hence, G = H X Zs.

Let G = (A4>< (x))k(y), where (z) = Z3, (y) = Zy, and p: Agx (z) — Ag
is the projection onto the first factor. Define a homomorphism 7: A4 — A4 by
the equality 7(a) = p(y~'ay) for @ € A4. This homomorphism is an automor-
phism, since the Klein subgroup K is y-invariant. Next, (z) < G, since (z) is
the center of H. This implies that |7| = 2.

By our classification, K X (y) = D4 and, hence, 7 (as well as y) stabilizes
one of the involutions in K and interchanges the other two. Therefore, the ac-
tion of the involution 7 on A4 coincides with the conjugation of A4 by some
transposition in S4. Renumbering the set {1,2,3,4}, we may assume that this
transposition is (12). Next, two subcases are possible.

(a) A = A4. Then (Aq4,y) = S4. By our classification, the group Sy has
the branching data (23,4) and (A4,y) < G in view of Subsection 2.2. Since
(z) 9 G, we have G = (A4,y) x (z) = Sy X Z3.

(b) AY # A4. Then (123)Y = (123)(12)z¢, where ¢ = £1. The equalities

ly| = 2 and |z| = 3 imply 2¥ = z and ((123)z°)" = ((123)x‘)_1. Therefore,

we obtain
G = ({(12)(34), (123)z°) X (y)) x (z) = Sy x Z3.
Thus, in both subcases, we may assume that
G=258;x(z|z*=1).

Let (z1,z2,z3) be a generating (2,3,12)-vector for G. In this case, |z1]| = 2
and z; € S4. Since (z1,22) = G and |z2| = 3, the elements z; and z2 have
the following form: z; = (rs) and z2 = (ijk)z*'. Employing Aut(G), we may
assume that 1 = (14) and z2 = (123)z. Thus, we arrive at the generating
(2,3,12)-vector ((14),(123)z,(1324)z71).

14.3. (2,4,6). Let H be a Sylow 3-subgroup in G and let L be a Sylow
2-subgroup in G. In view of Subsection 2.2 and our classification, H has
the branching data (3%), H = Z3 x Z3, and H 4 G. Since L contains
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an element of order 4, the group L is isomorphic to one of the groups Z4 x Z,
Zg, Qs, or Dy4. The group Z4 x Zy is absent in our classification. The possible
branching data for the groups Zg and Qg are (22,82) and (2,4%), respectively;
by Subsection 2.2, these groups are also excluded. Therefore, L = Dy.

Prove that L acts without kernel on H. If the kernel of the action is not
trivial then it contains a central involution g of L. Then

721 = INa(to)| (3 + 2 + %)

(see Subsection 2.3) and either |T{| = 0 (if 6 = 0 for all i) or |T{| > 12
(if there exists an 7 such that §; = 1). However, an involution can only have 2
or 6 or 10 fixed points (see the classification and Remark (8)), a contradiction.

By Lemma 1, the group Aut(Z3 X Z3) = GL3(3) has only one conjugacy
class of subgroups isomorphic to Dy4. Therefore,

G= <I:y:C:B | = y3 = [.’D,y] =1,
04 = _B2 — 1, B-]CB = C'_l, C_I-TC = y_]:
ClyC =2z, B'zB=z"1, B YyB = y>.

The group G has the following automorphisms: 7: z — z71, C — C~1;
p: C — Cy, B— Bz;and v: z - zy~}, y — zy, B — BC.

Let (z1,z2,23) be a generating (2,4,6)-vector for G. Each element of
order 4 in G is of the form C®z'y’/, where ¢ = +1 and i, € {0,1,—1}.

Applying to it the automorphisms p=IiCy* for e = 1 and 7u~*~7Cy~* for
g = —1, we obtain C. Therefore, we may assume that z3 = C.
An element of order 2 in G belongs to the union of the sets

{Bmi,BCm‘y—i,Bcz i BC3zy! l i€ {0,1,—1}}

and o
{Cza:'yJ | i,7 € {0,1,—1}}.

To ensure that (z1,z2) = G, we need to show that the element z; belongs to
the first set and ¢ # 0. All elements of the first set are automorphically conju-
gated for 7 # 0; this fact can be easily verified by using the automorphisms v

and C? that leave z9 = C invariant.

Thus, we may assume that z; = Bz and thus obtain the generating
(2,4, 6)-vector (Bz,C, BCz).

15. |G| = 120, (2,4, 5).
Since a group of order 120 is not simple, the group G contains a proper normal
subgroup H of minimal index and G/H is isomorphic to one of the following
groups: Zy, Z3, Zs, or As. Consider each of these cases separately.
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(a) G/H = Zj. In this case, taking account of the classification of actions
for groups of order 60, we infer H = As. In what follows, we assume that
H = As.

Let (z1,z2,23) be a generating (2,4, 5)-vector for G. Since z3 € H and
(z1,23) = G, we have G = H X (z1). The element z; acts without kernel
on H; otherwise, G = As X Zg and G has no elements of order 4 (on the other
hand, z2 € G and |z2| = 4). Since Aut(As) = S5, z1 acts on H = Aj as
conjugation by some involution a in Ss. If @ € As then the involution az; acts
trivially on As and G = As x (az;). But the last equality has already been
discarded. Therefore, a is a transposition in S5 and G = H X (z1) = Ss.

Thus, we assume that G = Ss, z; is a transposition, and z3 is a cycle
of length 5. Conjugating by an appropriate element in S5, we may assume
that z3 = (12345) and z; = (17) for some j € {2,3,4,5}. The condition that
Ty = :cl—l:ca-] is an element of order 4 is satisfied only for j = 2 and j = 5.
But (12) = (15)*2. Therefore, we may assume that z; = (12) and thus arrive
at the generating (2,4, 5)-vector ((12), (2543), (12345)).

(b) G/H = Z3. In view of Subsection 2.2 and the known branching data
for groups of order 40, this case is impossible.

(c) G/H = Zs. This case can be eliminated by analogy with case (b).

(d) G/H = As. Then either G = Ag x Z3 or G = SLy(5). The first
subcase has already been eliminated. Let G = SLy(5). Since SLy(5) contains
only one involution, we have (z1,z2) = (z2) # G, a contradiction.

16. |G| = 144, (2,3,8).

Prove that there are no such groups. Otherwise, G has a normal subgroup
of index 2 or 3. The former case contradicts Subsection 2.2 and the above-
described branching data for groups of order 72. In view of Lemma 8, the latter
case is eliminated too.

We have settled all cases and so the proof of the theorem is complete.
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