FINITE SUBGROUPS OF HYPERBOLIC GROUPS

O. V. Bogopolskii* and V. N. Gerasimov**

UDC 512,544.2

Let G be a hyperbolic group which is δ -thin w.r.t. a finite generating set X. We show that every finite subgroup of G is conjugate to a subgroup each element of which has length at most $2\delta + 1$ relative to X.

Let G be a group generated by elements of a finite set \mathcal{X} . Denote by $\Gamma_{\mathcal{X}}(G)$ the right Cayley graph of G w.r.t. \mathcal{X} . We will consider $\Gamma_{\mathcal{X}}(G)$ as the geodesic-metric space with metric d, in which each edge of the graph has unit length. For any elements a and b in G, [a,b] denotes some geodesic path in $\Gamma_{\mathcal{X}}(G)$ beginning at a and ending at b; |a| is the length of the path [1,a]. Put $B(r) = \{g \in G \mid |g| \leq r\}$.

A geodesic triangle in $\Gamma_{\mathcal{X}}(G)$ with sides [a,b], [a,c], and [b,c] is called δ -thin if, for any points B and C such that $B \in [a,b]$, $C \in [a,c]$, and

$$d(a,B) = d(a,C) \le \frac{1}{2}(d(a,b) + d(a,c) - d(b,c)),$$

the inequality $d(B, C) \leq \delta$ holds.

Definition. The subgroup $H \leq G$ is said to be δ -thin w.r.t. \mathcal{X} if every geodesic triangle in $\Gamma_{\mathcal{X}}(G)$ with vertices in H is δ -thin.

We recall that a group G is called hyperbolic if, for some finite generating set \mathcal{X} and number δ , G is δ -thin w.r.t. \mathcal{X} .

The main result of this article is the following:

THEOREM. Let G be a group with a finite generating set \mathcal{X} . Then any of its finite and δ -thin subgroups H w.r.t. \mathcal{X} is conjugate to some subgroup lying in a ball $B(3\delta+1)$.

If G is a hyperbolic group which is δ -thin w.r.t. \mathcal{X} , then any of its finite subgroups H is conjugate to some subgroup lying in the ball $B(2\delta+1)$.

At this point, we cite some results obtained in earlier works on hyperbolic groups G which are δ -thin w.r.t. \mathcal{X} .

Every element of finite order in G is conjugate to an element of length not more than $2\delta + 1$ (see [1, Prop. 1.3]).

Every finite cyclic subgroup of prime order in G is conjugate to a subgroup lying in $B(4\delta + 1)$ (see [2, Chap. 4, Prop. 13]).

Behind the proof of the latter result is the idea that subgroups of prime order have a common fixed point whenever they act on a finite-dimensional contractible Rips complex. For arbitrary finite subgroups, this argument breaks down: in [3, Cor. II.7.4], it was proved that there exist finite groups acting on a

^{*}Supported by RFFR grant No. 93-11-1501 and by ISF grant RPC000.

^{**}Supported by RFFR grant No. 93-011-16171.

contractible three-dimensional CW-complex with no fixed point in common (see also [4]). Therefore, here we propose a proof based on a different idea.

COROLLARY. In a hyperbolic group, the number of conjugacy classes of finite subgroups is finite. Independently, this corollary was proved by Olshanskii (oral communication); see also partial results in [5, Props. 2.2.B and 5.3.C'].

In order to prove our theorem, we use the following:

LEMMA [6]. Let G be a group with a finite generating set \mathcal{X} and let H be its finite subgroup which is δ -thin w.r.t. \mathcal{X} . Then, for any four elements x, y, z, and t from H, the following inequality holds: $d(x, y) + d(z, t) \leq \max\{d(y, z) + d(t, x), d(y, t) + d(x, z)\} + 2\delta$.

Proof of the theorem. Let $l = \max\{|h| \mid h \in H\}$. Then the following statement is valid.

If [x, y] and [z, t] are two geodesics in $\Gamma_{\mathcal{X}}(G)$ of length l with end points in H, then their middles are at distance at most 3δ apart.

In view of the above lemma, at least one of the distances d(x,z), d(y,z), d(x,t), or d(y,t) is not less than $l-\delta$. Without loss of generality, we may assume that $d(y,z) \geq l-\delta$. Let A, B, and C be middles on the geodesics [x,y], [y,z], and [z,t], respectively, and let B_1 and B_2 be points on [x,y] and [z,t] such that $d(y,B_1)=d(z,B_2)=d(y,B)$. Since the geodesic triangle xyz is δ -thin and $d(y,B)\leq \frac{1}{2}(d(x,y)+d(y,z)-d(x,z))$, we infer that $d(B,B_1)\leq \delta$. Moreover, $d(A,B_1)=\frac{1}{2}(d(x,y)-d(y,z))\leq \frac{1}{2}\delta$. Hence $d(A,B)\leq \frac{3}{2}\delta$. Similarly, for the geodesic triangle yzt we derive $d(B,C)\leq \frac{3}{2}\delta$. Thus, $d(A,C)\leq 3\delta$.

Now let b be some element from H of length l and let a be an arbitrary element in H. Consider the geodesics [1,b] and a[1,b]. Assume that K and L, respectively, are their middles, and b_1 is an element in G such that $b_1 \in [1,b]$ and $d(b_1,K) \le \frac{1}{2}$. Then $|b_1^{-1}ab_1| = d(b_1,ab_1) \le d(b_1,K) + d(K,L) + d(L,ab_1) \le 3b + 1$. Thus, $H^{b_1} \subseteq B(3b+1)$.

Next let G be a hyperbolic group which is δ -thin w.r.t. \mathcal{X} and let H be its finite subgroup. We make use of the following statement which admits a routine proof.

For an arbitrary geodesic triangle with vertices X, Y, and Z and for the middle T on the geodesic [X,Y], the inequality $d(T,Z) \leq \max\{d(X,Z),d(Y,Z)\} - \frac{1}{2}d(X,Y) + \delta$ holds.

In view of this, $d(A, z) \leq \max\{d(x, z), d(y, z)\} - \frac{1}{2} + \delta$ and $d(A, t) \leq \max\{d(x, t), d(y, t)\} - \frac{1}{2} + \delta$. Let l be an even number. Then A is a vertex and

$$d(C,A) \leq \max\{d(A,z),d(A,t)\} - \frac{l}{2} + \delta \leq \max\{d(x,z),d(y,z),d(x,t),d(y,t)\} - l + 2\delta \leq 2\delta.$$

Let l be odd and let M and N be vertices on the geodesics [x,y] and [z,t] such that d(y,M)=d(z,N)=(l-1)/2. Then $d(M,z)\leq d(A,z)+\frac{1}{2}$, $d(M,t)\leq d(A,t)+\frac{1}{2}$, and

$$d(C,M) \leq \max\{d(t,M),d(z,M)\} - \frac{l}{2} + \delta \leq 2\delta + \frac{1}{2}.$$

Consequently, $d(N, M) \le d(N, C) + d(C, M) \le 2\delta + 1$, from which our last claim follows immediately. Acknowledgement. We would like to express our gratitude to D. G. Khramtsov and V. A. Churkin for their interest in our work.

REFERENCES

1. R. I. Grigorchuk and I. G. Lysionok, "A description of solutions of quadratic equations in hyperbolic groups," Int. J. Alg. Comp., 2, No. 3, 237-274 (1992).

- 2. E. Ghys and P. de la Harpe (eds.), Espaces Metriques Hyperbolicues sur les Groupes Hyperbolicues dàprés Mikhael Gromov, Birkhaüser (1991).
- 3. A. A. Assadi, "Finite group actions on simply-connected manifolds and CW complexes," Mem. Am. Math. Soc., 35, No. 257 (1982).
- 4. C. Casacuberta and W. Dicks, "On finite groups acting on acyclic complexes of dimension two," Publicacions Matemàtiques, 36, 453-466 (1992).
- 5. M. Gromov, in Hyperbolic groups, Essays in Group Theory, S. M. Gersten (ed.), M.S.R.I., Pub. 8, Springer (1987).
- 6. M. Coornaert, T. Delsant, and A. Papadopoulos, Géomètric et Thèorie des Groupes: Les Groupes, Hyperboliques de Gromov, Lecture Notes Math., No. 1441, Springer (1991).